ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal cumulants of the current in diffusive systems on a ring

117   0   0.0 ( 0 )
 نشر من قبل Frederic Van Wijland
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate exactly the first cumulants of the integrated current and of the activity (which is the total number of changes of configurations) of the symmetric simple exclusion process (SSEP) on a ring with periodic boundary conditions. Our results indicate that for large system sizes the large deviation functions of the current and of the activity take a universal scaling form, with the same scaling function for both quantities. This scaling function can be understood either by an analysis of Bethe ansatz equations or in terms of a theory based on fluctuating hydrodynamics or on the macroscopic fluctuation theory of Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim.



قيم البحث

اقرأ أيضاً

When an extended system is coupled at its opposite boundaries to two reservoirs at different temperatures or chemical potentials, it cannot achieve a global thermal equilibrium and is instead driven to a set of current-carrying nonequilibrium states. Despite the broad relevance of such a scenario to metallic systems, there have been limited investigations of the entanglement structure of the resulting long-time states, in part, due to the fundamental difficulty in solving realistic models for disordered, interacting electrons. We investigate this problem by carefully analyzing two toy models for coherent quantum transport of diffusive fermions: the celebrated three-dimensional, noninteracting Anderson model and a class of random quantum circuits acting on a chain of qubits, which exactly maps to a diffusive, interacting fermion problem. Crucially, the random circuit model can also be tuned to have no interactions between the fermions, similar to the Anderson model. We show that the long-time states of driven noninteracting fermions exhibit volume-law mutual information and entanglement, both for our random circuit model and for the nonequilibrium steady-state of the Anderson model. With interactions, the random circuit model is quantum chaotic and approaches local equilibrium, with only short-range entanglement. These results provide a generic picture for the emergence of local equilibrium in current-driven quantum-chaotic systems, and also provide examples of stable, highly-entangled many-body states out of equilibrium. We discuss experimental techniques to probe these effects in low-temperature mesoscopic wires or ultracold atomic gases.
We use fluctuating hydrodynamics to analyze the dynamical properties in the non-equilibrium steady state of a diffusive system coupled with reservoirs. We derive the two-time correlations of the density and of the current in the hydrodynamic limit in terms of the diffusivity and the mobility. Within this hydrodynamic framework we discuss a generalization of the fluctuation dissipation relation in a non-equilibrium steady state where the response function is expressed in terms of the two-time correlations. We compare our results to an exact solution of the symmetric exclusion process. This exact solution also allows one to directly verify the fluctuating hydrodynamics equation.
We derive the exact n-point current expectation values in the Landauer-Buttiker non-equilibrium steady state of a multi terminal system with star graph geometry and a point-like defect localised in the vertex. The current cumulants are extracted from the connected correlation functions and the cumulant generating function is established. We determine the moments, show that the associated moment problem has a unique solution and reconstruct explicitly the corresponding probability distribution. The basic building blocks of this distribution are the probabilities of particle emission and absorption from the heat reservoirs, driving the system away from equilibrium. We derive and analyse in detail these probabilities, showing that they fully describe the quantum transport problem in the system.
We consider networks made of parallel lanes along which particles hop according to driven diffusive dynamics. The particles also hop transversely from lane to lane, hence indirectly coupling their longitudinal dynamics. We present a general method fo r constructing the phase diagram of these systems which reveals that in many cases their physics reduce to that of single-lane systems. The reduction to an effective single-lane description legitimizes, for instance, the use of a single TASEP to model the hopping of molecular motors along the many tracks of a single microtubule. Then, we show how, in quasi-2D settings, new phenomena emerge due to the presence of non-zero transverse currents, leading, for instance, to strong `shear localisation along the network.
Computing the stochastic entropy production associated with the evolution of a stochastic dynamical system is a well-established problem. In a small number of cases such as the Ornstein-Uhlenbeck process, of which we give a complete exposition, the d istribution of entropy production can be obtained analytically, but in general it is much harder. A recent development in solving the Fokker-Planck equation, in which the solution is written as a product of positive functions, enables the distribution to be obtained approximately, with the assistance of simple numerical techniques. Using examples in one and higher dimension, we demonstrate how such a framework is very convenient for the computation of stochastic entropy production in diffusion processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا