ترغب بنشر مسار تعليمي؟ اضغط هنا

Refined similarity hypotheses in shell models of turbulence

78   0   0.0 ( 0 )
 نشر من قبل Emily SC Ching
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A major challenge in turbulence research is to understand from first principles the origin of anomalous scaling of the velocity fluctuations in high-Reynolds-number turbulent flows. One important idea was proposed by Kolmogorov [J. Fluid Mech. {bf 13}, 82 (1962)], which attributes the anomaly to the variations of the locally averaged energy dissipation rate. Kraichnan later pointed out [J. Fluid Mech. {bf 62}, 305 (1973)] that the locally averaged energy dissipation rate is not an inertial-range quantity and a proper inertial-range quantity would be the local energy transfer rate. As a result, Kraichnans idea attributes the anomaly to the variations of the local energy transfer rate. These ideas, generally known as refined similarity hypotheses, can also be extended to study the anomalous scaling of fluctuations of an active scalar, like the temperature in turbulent convection. In this paper, we examine the validity of these refined similarity hypotheses and their extensions to an active scalar in shell models of turbulence. We find that Kraichnans refined similarity hypothesis and its extension are valid.



قيم البحث

اقرأ أيضاً

Anomalous scaling in the statistics of an active scalar in homogeneous turbulent convection is studied using a dynamical shell model. We extend refined similarity ideas for homogeneous and isotropic turbulence to homogeneous turbulent convection and attribute the origin of the anomalous scaling to variations of the entropy transfer rate. We verify the consequences and thus the validity of our hypothesis by showing that the conditional statistics of the active scalar and the velocity at fixed values of entropy transfer rate are not anomalous but have simple scaling with exponents given by dimensional considerations, and that the intermittency corrections are given by the scaling exponents of the moments of the entropy transfer rate.
Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shel l models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accurate dissipation rate. Using modern computers it is difficult to attain an inertial range of three decades with direct numerical simulations, whereas eight are possible using shell models. In this review we set up a general mathematical framework allowing the description of any MHD shell model. The variety of the latter, with their advantages and weaknesses, is introduced. Finally we consider a number of applications, dealing with free-decaying MHD turbulence, dynamo action, Alfven waves and the Hall effect.
Turbulent shear flows, such as those occurring in the wall region of turbulent boundary layers, manifest a substantial increase of intermittency with respect to isotropic conditions. This suggests a close link between anisotropy and intermittency. Ho wever, a rigorous statistical description of anisotropic flows is, in most cases, hampered by the inhomogeneity of the field. This difficulty is absent for the homogeneous shear flow. For this flow the scale by scale budget is discussed here by using the appropriate form of the Karman-Howarth equation, to determine the range of scales where the shear is dominant. The issuing generalization of the four-fifths law is then used as the guideline to extend to shear dominated flows the Kolmogorov-Obhukhov theory of intermittency. The procedure leads naturally to the formulation of generalized structure functions and the description of intermittency thus obtained reduces to the K62 theory for vanishing shear. Also here the intermittency corrections to the scaling exponents are carried by the moments of the coarse grained energy dissipation field. Numerical experiments give indications that the dissipation field is statistically unaffected by the shear, thereby supporting the conjecture that the intermittency corrections are universal. This observation together with the present reformulation of the theory gives reason for the increased intermittency observed in the classical longitudinal velocity increments.
132 - Victor S. Lvov 2006
We present two phenomenological models for 2D turbulence in which the energy spectrum obeys a nonlinear fourth-order and a second-order differential equations respectively. Both equations respect the scaling properties of the original Navier-Stokes e quations and it has both the -5/3 inverse-cascade and t -3 direct-cascade spectra. In addition, the fourth order equation has Raleigh-Jeans thermodynamic distributions, as exact steady state solutions. We use the fourth-order model to derive a relation between the direct-cascade and the inverse-cascade Kolmogorov constants which is in a good qualitative agreement with the laboratory and numerical experiments. We obtain a steady state solution where both the enstrophy and the energy cascades are present simultaneously and we discuss it in context of the Nastrom-Gage spectrum observed in atmospheric turbulence. We also consider the effect of the bottom friction onto the cascade solutions, and show that it leads to an additional decrease and finite-wavenumber cutoffs of the respective cascade spectra.
96 - Emily S.C. Ching , H. Guo , 2008
Different scaling behavior has been reported in various shell models proposed for turbulent thermal convection. In this paper, we show that buoyancy is not always relevant to the statistical properties of these shell models even though there is an ex plicit coupling between velocity and temperature in the equations of motion. When buoyancy is relevant (irrelevant) to the statistical properties, the scaling behavior is Bolgiano-Obukhov (Kolmogorov) plus intermittency corrections. We show that the intermittency corrections of temperature could be solely attributed to fluctuations in the entropy transfer rate when buoyancy is relevant but due to fluctuations in both energy and entropy transfer rates when buoyancy is irrelevant. This difference can be used as a criterion to distinguish whether temperature is behaving as an active or a passive scalar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا