ﻻ يوجد ملخص باللغة العربية
The magnetic fluctuations associated with a quantum critical point (QCP) are widely believed to cause the non-Fermi liquid behaviors and unconventional superconductivities, for example, in heavy fermion systems and high temperature cuprate superconductors. Recently, superconductivity has been discovered in iron-based layered compound $LaO_{1-x}F_xFeAs$ with $T_c$=26 Kcite{yoichi}, and it competes with spin-density-wave (SDW) ordercite{dong}. Neutron diffraction shows a long-rang SDW-type antiferromagnetic (AF) order at $sim 134$ K in LaOFeAscite{cruz,mcguire}. Therefore, a possible QCP and its role in this system are of great interests. Here we report the detailed phase diagram and anomalous transport properties of the new high-Tc superconductors $SmO_{1-x}F_xFeAs$ discovered by uscite{chenxh}. It is found that superconductivity emerges at $xsim$0.07, and optimal doping takes place in the $xsim$0.20 sample with highest $T_c sim $54 K. While $T_c$ increases monotonically with doping, the SDW order is rapidly suppressed, suggesting a QCP around $x sim$0.14. As manifestations, a linear temperature dependence of the resistivity shows up at high temperatures in the $x<0.14$ regime, but at low temperatures just above $T_c$ in the $x>0.14$ regime; a drop in carrier density evidenced by a pronounced rise in Hall coefficient are observed, which mimic the high-$T_c$ cuprates. The simultaneous occurrence of order, carrier density change and criticality makes a compelling case for a quantum critical point in this system.
The importance of antiferromagnetic fluctuations are widely acknowledged in most unconventional superconductors. In addition, cuprates and iron pnictides often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital ord
We report the successful synthesis of FeSe$_{1-x}$S$_{x}$ single crystals with $x$ ranging from 0 to 1 via a hydrothermal method. A complete phase diagram of FeSe$_{1-x}$S$_{x}$ has been obtained based on resistivity and magnetization measurements. T
Platelet-like single crystals of the Ca(Fe1-xCox)2As2 series having lateral dimensions up to 15 mm and thickness up to 0.5 mm were obtained from the high temperature solution growth technique using Sn flux. Upon Co doping, the c-axis of the tetragona
We study the properties of $s$-wave superconductivity induced around a nematic quantum critical point in two-dimensional metals. The strong Landau damping and the Cooper pairing between incoherent fermions have dramatic mutual influence on each other
Unconventional superconductivity arises at the border between the strong coupling regime with local magnetic moments and the weak coupling regime with itinerant electrons, and stems from the physics of criticality that dissects the two. Unveiling the