Amplification of polarization NOON states


الملخص بالإنكليزية

NOON states are path entangled states which can be exploited to enhance phase resolution in interferometric measurements. In the present paper we analyze the quantum states obtained by optical parametric amplification of polarization NOON states. First we study, theoretically and experimentally, the amplification of a 2-photon state by a collinear Quantum Injected Optical Parametric Amplifier (QIOPA). We compared the stimulated emission regime with the spontaneous one, studied by Sciarrino et al. (PRA 77, 012324), finding comparable visibilities between the two cases but an enhancement of the signal in the stimulated case. As a second step, we show that the collinear amplifier cannot be successfully used for amplifying N-photon states with N>2 due to the intrinsic lambda/4 oscillation pattern of the crystal. To overcome this limitation, we propose to adopt a scheme for the amplification of a generic state based on a non-collinear QIOPA and we show that the state obtained by the amplification process preserves lambda/N feature and exhibits a high resilience to losses. Furthermore, an asymptotic unity visibility can be obtained when correlation functions with sufficiently high order M are analyzed.

تحميل البحث