ﻻ يوجد ملخص باللغة العربية
Entanglement does not correspond to any observable and its evaluation always corresponds to an estimation procedure where the amount of entanglement is inferred from the measurements of one or more proper observables. Here we address optimal estimation of entanglement in the framework of local quantum estimation theory and derive the optimal observable in terms of the symmetric logarithmic derivative. We evaluate the quantum Fisher information and, in turn, the ultimate bound to precision for several families of bipartite states, either for qubits or continuous variable systems, and for different measures of entanglement. We found that for discrete variables, entanglement may be efficiently estimated when it is large, whereas the estimation of weakly entangled states is an inherently inefficient procedure. For continuous variable Gaussian systems the effectiveness of entanglement estimation strongly depends on the chosen entanglement measure. Our analysis makes an important point of principle and may be relevant in the design of quantum information protocols based on the entanglement content of quantum states.
Recently, the fast development of quantum technologies led to the need for tools allowing the characterization of quantum resources. In particular, the ability to estimate non-classical aspects, e.g. entanglement and quantum discord, in two-qubit sys
We present a new method of analytically deriving the entanglement of formation of the bipartite mixed state. The method realizes the optimal decomposition families of states. Our method can lead to many new results concerning entanglement of formatio
We provide several formulas that determine the optimal number of entangled bits (ebits) that a general entanglement-assisted quantum code requires. Our first theorem gives a formula that applies to an arbitrary entanglement-assisted block code. Corol
By using a systematic optimization approach we determine quantum states of light with definite photon number leading to the best possible precision in optical two mode interferometry. Our treatment takes into account the experimentally relevant situa
Entanglement plays a central role in quantum information processing, indicating the non-local correlation of quantum matters. However, few effective ways are known to detect the amount of entanglement of an unknown quantum state. In this work, we pro