ترغب بنشر مسار تعليمي؟ اضغط هنا

The Epeak-Eiso plane of long Gamma Ray Bursts and selection effects

104   0   0.0 ( 0 )
 نشر من قبل Giancarlo Ghirlanda
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Ghirlanda




اسأل ChatGPT حول البحث

We study the distribution of long Gamma Ray Bursts in the Ep-Eiso and in the Ep,obs-Fluence planes through an updated sample of 76 bursts, with measured redshift and spectral parameters, detected up to September 2007. We confirm the existence of a strong rest frame correlation Ep ~ Eiso^0.54+-0.01. Contrary to previous studies, no sign of evolution with redshift of the Ep-Eiso correlation (either its slope and normalisation) is found. The 76 bursts define a strong Ep,obs-Fluence correlation in the observer frame (Ep,obs ~ F^0.32+-0.05) with redshifts evenly distributed along this correlation. We study possible instrumental selection effects in the observer frame Ep,obs-Fluence plane. In particular, we concentrate on the minimum peak flux necessary to trigger a given GRB detector (trigger threshold) and the minimum fluence a burst must have to determine the value of Ep,obs (spectral analysis threshold). We find that the latter dominates in the Ep,obs-Fluence plane over the former. Our analysis shows, however, that these instrumental selection effects do not dominate for bursts detected before the launch of the Swift satellite, while the spectral analysis threshold is the dominant truncation effect of the Swift GRB sample (27 out of 76 events). This suggests that the Ep,obs-Fluence correlation defined by the pre--Swift sample could be affected by other, still not understood, selection effects. Besides we caution about the conclusions on the existence of the Ep,obs-Fluence correlation based on our Swift sample alone.



قيم البحث

اقرأ أيضاً

We used a sample of GRBs detected by Fermi and Swift to reanalyze the correlation discovered by Amati et al. (2002) between Epi, the peak energy of the prompt GRB emission, and Eiso, the energy released by the GRB assuming isotropic emission. This co rrelation has been disputed by various authors, and our aim is to assess whether it is an intrinsic GRB property or the consequence of selection effects. We constructed a sample of Fermi GRBs with homogeneous selection criteria, and we studied their distribution in the Epi-Eiso plane. Our sample is made of 43 GRBs with a redshift and 243 GRBs without a redshift. We show that GRBs with a redshift follow a broad Epi-Eiso relation, while GRBs without a redshift show several outliers. We use these samples to discuss the impact of selection effects associated with GRB detection and with redshift measurement. We find that the Epi-Eiso relation is partly due to intrinsic GRB properties and partly due to selection effects. The lower right boundary of the Epi-Eiso relation stems from a true lack of luminous GRBs with low Epi. In contrast, the upper left boundary is attributed to selection effects acting against the detection GRBs with low Eiso and large Epi that appear to have a lower signal-to-noise ratio. In addition, we demonstrate that GRBs with and without a redshift follow different distributions in the Epi-Eiso plane. GRBs with a redshift are concentrated near the lower right boundary of the Epi-Eiso relation. This suggests that it is easier to measure the redshift of GRBs close to the lower Epi-Eiso boundary. In this context, we attribute the controversy about the reality of the Amati relation to the complex nature of this relation resulting from the combination of a true physical boundary and biases favoring the detection and the measurement of the redshift of GRBs located close to this boundary.
119 - T. Sakamoto , G. Sato , L. Barbier 2008
We report a correlation based on a spectral simulation study of the prompt emission spectra of gamma-ray bursts (GRBs) detected by the Swift Burst Alert Telescope (BAT). The correlation is between the Epeak energy, which is the peak energy in the u F_ u spectrum, and the photon index (Gamma) derived from a simple power-law model. The Epeak - Gamma relation, assuming the typical smoothly broken power-law spectrum of GRBs, is log Epeak = 3.258 - 0.829Gamma (1.3 < Gamma < 2.3). We take into account not only a range of Epeak energies and fluences, but also distributions for both the low-energy photon index and the high-energy photon index in the smoothly broken power-law model. The distribution of burst durations in the BAT GRB sample is also included in the simulation. Our correlation is consistent with the index observed by BAT and Epeak measured by the BAT, and by other GRB instruments. Since about 85% of GRBs observed by the BAT are acceptably fit with the simple power-law model because of the relatively narrow energy range of the BAT, this relationship can be used to estimate Epeak when it is located within the BAT energy range.
There exists an inevitable scatter in intrinsic luminosity of Gamma Ray Bursts(GRBs). If there is relativistic beaming in the source, viewing angle variation necessarily introduces variation in the intrinsic luminosity function(ILF). Scatter in the I LF can cause a selection bias where distant sources that are detected have a larger median luminosity than those detected close by. Median luminosity, as we know, divides any given population into equal halves. When the functional form of a distribution is unknown, it can be a more robust diagnostic than any that use trial functional forms. In this work we employ a statistical test based on median luminosity and apply it to test a class of models for GRBs. We assume that the GRB jet has a finite opening angle and that the orientation of the GRB jet is random relative to the observer. We parameterize the jet with constant Lorentz factor $Gamma$ and opening angle $theta_0$. We calculate $L_{median}$ as a function of redshift with an average of 17 grbs in each redshift bin($dz=0.01$) empirically, theoretically and use Fermi GBM data, noting that SWIFT data is problematic as it is biased, specially at high redshifts. We find that $L_{median}$ is close to $L_{max}$ for sufficiently extended GRB jet and does not fit the data. We find an acceptable fit with the data when $Gamma$ is between $100$ and $200$, $theta_0leq 0.1$, provided that the jet material along the line of sight to the on axis observer is optically thick, such that the shielded maximum luminosity is well below the bare $L_{max}$. If we associate an on-axis observer with a classically projected monotonically decreasing afterglow, we find that their ILF is similar to those of off-jet observer which we associate with flat phase afterglows.
We study statistically 197 long gamma-ray bursts, detected and measured in detail by the BATSE instrument of the Compton Gamma-Ray Observatory. In the sample 10 variables, describing for any burst the time behavior of the spectra and other quantities , are collected. The factor analysis method is used to find the latent random variables describing the temporal and spectral properties of GRBs. The application of this particular method to this sample indicates that five factors and the $REpk$ spectral variable (the ratio of peak energies in the spectrum) describe the sample satisfactorily. Both the pseudo-redshifts inferred from the variability, and the Amati-relation in its original form, are disfavored.
One of the most prominent, yet controversial associations derived from the ensemble of prompt-phase observations of gamma-ray bursts (GRBs) is the apparent correlation in the source frame between the peak energy Epeak) of the nu-F(nu) spectrum and th e isotropic radiated energy, Eiso. Since most gamma-ray bursts (GRBs) have Epeak above the energy range (15-150 keV) of the Burst Alert Telescope (BAT) on Swift, determining accurate Epeak values for large numbers of Swift bursts has been difficult. However, by combining data from Swift/BAT and the Suzaku Wide-band All-Sky Monitor (WAM), which covers the energy range from 50-5000 keV, for bursts which are simultaneously detected, one can accurately fit Epeak and Eiso and test the relationship between them for the Swift sample. Between the launch of Suzaku in July 2005 and the end of April 2009, there were 48 gamma-ray bursts (GRBs) which triggered both Swift/BAT and WAM and an additional 48 bursts which triggered Swift and were detected by WAM, but did not trigger. A BAT-WAM team has cross-calibrated the two instruments using GRBs, and we are now able to perform joint fits on these bursts to determine their spectral parameters. For those bursts with spectroscopic redshifts, we can also calculate the isotropic energy. Here we present the results of joint Swift/BAT-Suzaku/WAM spectral fits for 91 of the bursts detected by the two instruments. We show that the distribution of spectral fit parameters is consistent with distributions from earlier missions and confirm that Swift bursts are consistent with earlier reported relationships between Epeak and isotropic energy. We show through time-resolved spectroscopy that individual burst pulses are also consistent with this relationship.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا