ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-dependent current-density-functional theory of spin-charge separation and spin drag in one-dimensional ultracold Fermi gases

506   0   0.0 ( 0 )
 نشر من قبل Marco Polini
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the large interest in the non-equilibrium dynamics of low-dimensional quantum many-body systems, we present a fully-microscopic theoretical and numerical study of the charge and spin dynamics in a one-dimensional ultracold Fermi gas following a quench. Our approach, which is based on time-dependent current-density-functional theory, is applicable well beyond the linear-response regime and produces both spin-charge separation and spin-drag-induced broadening of the spin packets.



قيم البحث

اقرأ أيضاً

Spin propagation in systems of one-dimensional interacting fermions at finite temperature is intrinsically diffusive. The spreading rate of a spin packet is controlled by a transport coefficient termed spin drag relaxation time $tau_{rm sd}$. In this paper we present both numerical and analytical calculations of $tau_{rm sd}$ for a two-component spin-polarized cold Fermi gas trapped inside a tight atomic waveguide. At low temperatures we find an activation law for $tau_{rm sd}$, in agreement with earlier calculations of Coulomb drag between slightly asymmetric quantum wires, but with a different and much stronger temperature dependence of the prefactor. Our results provide a fundamental input for microscopic time-dependent spin-density functional theory calculations of spin transport in 1D inhomogeneous systems of interacting fermions.
We revisit early suggestions to observe spin-charge separation (SCS) in cold-atom settings {in the time domain} by studying one-dimensional repulsive Fermi gases in a harmonic potential, where pulse perturbations are initially created at the center o f the trap. We analyze the subsequent evolution using generalized hydrodynamics (GHD), which provides an exact description, at large space-time scales, for arbitrary temperature $T$, particle density, and interactions. At $T=0$ and vanishing magnetic field, we find that, after a nontrivial transient regime, spin and charge dynamically decouple up to perturbatively small corrections which we quantify. In this limit, our results can be understood based on a simple phase-space hydrodynamic picture. At finite temperature, we solve numerically the GHD equations, showing that for low $T>0$ effects of SCS survive and {characterize} explicitly the value of $T$ for which the two distinguishable excitations melt.
The frequency-dependent response of a one-dimensional fermion system is investigated using Current Density Functional Theory (CDFT) within the local approximation (LDA). DFT-LDA, and in particular CDFT-LDA, reproduces very well the dispersion of the collective excitations. Unsurprisingly, however, the approximation fails for details of the dynamic response for large wavevectors. In particular, we introduce CDFT for the one-dimensional spinless fermion model with nearest-neighbor interaction, and use CDFT-LDA plus exact (Bethe ansatz) results for the groundstate energy as function of particle density and boundary phase to determine the linear response. The successes and failures of this approach are discussed in detail.
Using the adaptive time-dependent density-matrix renormalization group method for the 1D Hubbard model, the splitting of local perturbations into separate wave packets carrying charge and spin is observed in real-time. We show the robustness of this separation beyond the low-energy Luttinger liquid theory by studying the time-evolution of single particle excitations and density wave packets. A striking signature of spin-charge separation is found in 1D cold Fermi gases in a harmonic trap at the boundary between liquid and Mott-insulating phases. We give quantitative estimates for an experimental observation of spin-charge separation in an array of atomic wires.
We report on measurements of quantum many-body modes in ballistic wires and their dependence on Coulomb interactions, obtained from tunneling between two parallel wires in a GaAs/AlGaAs heterostructure while varying electron density. We observe two s pin modes and one charge mode of the coupled wires, and map the dispersion velocities of the modes down to a critical density, at which spontaneous localization is observed. Theoretical calculations of the charge velocity agree well with the data, although they also predict an additional charge mode that is not observed. The measured spin velocity is found to be smaller than theoretically predicted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا