ﻻ يوجد ملخص باللغة العربية
For the first time, a phenomenological analysis of the experimental electromagnetic form factors of the nucleon, both in the timelike and spacelike regions, is performed by taking into account the effects of nonvalence components in the nucleon state, within a light-front framework. Our model, based on suitable Ansatzes for the nucleon Bethe-Salpeter amplitude and a microscopic version of the well-known Vector Meson Dominance model, has only four free parameters (determined by the spacelike data with $chi^2/datum sim 1.7$), and yields a nice description of the experimental electromagnetic form factors in the physical region in the range $-30 (GeV/c)^2 < q^2 < 20 (GeV/c)^2$, except for the neutron one in the timelike region. Valuable information can be gained in the timelike region on possible missing Vector Mesons around $q^2 sim 4.5 (GeV/c)^2$ and $q^2 sim 8.0 (GeV/c)^2$
We present a comprehensive analysis of the spacelike nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock components $ket {qqqqbar{q}}$
A Poincare-covariant quark+diquark Faddeev equation is used to compute nucleon elastic form factors on $0leq Q^2leq 18 ,m_N^2$ ($m_N$ is the nucleon mass) and elucidate their role as probes of emergent hadronic mass in the Standard Model. The calcula
The nucleon electromagnetic form factors are calculated in light cone QCD sum rules framework using the most general form of the nucleon interpolating current. Using two forms of the distribution amplitudes (DAs), predictions for the form factors are
The role of the strange quarks on the low-energy interactions of the proton can be probed through the strange electromagnetic form factors. Knowledge of these form factors provides essential input for parity-violating processes and contributes to the
In this paper we present the derivation as well as the numerical results for the electromagnetic form factors of the nucleon within the chiral quark soliton model in the semiclassical quantization scheme. The model is based on semibosonized SU(2) Nam