ترغب بنشر مسار تعليمي؟ اضغط هنا

Localized Solitons of a (2+1)-dimensional Nonlocal Nonlinear Schrodinger Equation

147   0   0.0 ( 0 )
 نشر من قبل Kenichi Maruno
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new integrable (2+1)-dimensional nonlocal nonlinear Schrodinger equation is proposed. The $N$-soliton solution is given by Gram type determinant. It is found that the localized N-soliton solution has interesting interaction behavior which shows change of amplitude of localized pulses after collisions.



قيم البحث

اقرأ أيضاً

454 - J. Lenells , A. S. Fokas 2009
We analyze initial-boundary value problems for an integrable generalization of the nonlinear Schrodinger equation formulated on the half-line. In particular, we investigate the so-called linearizable boundary conditions, which in this case are of Rob in type. Furthermore, we use a particular solution to verify explicitly all the steps needed for the solution of a well-posed problem.
384 - J. Lenells , A. S. Fokas 2008
We consider an integrable generalization of the nonlinear Schrodinger (NLS) equation that was recently derived by one of the authors using bi-Hamiltonian methods. This equation is related to the NLS equation in the same way that the Camassa Holm equa tion is related to the KdV equation. In this paper we: (a) Use the bi-Hamiltonian structure to write down the first few conservation laws. (b) Derive a Lax pair. (c) Use the Lax pair to solve the initial value problem. (d) Analyze solitons.
116 - Tao Xu , Sha Lan , Min Li 2018
By using the Darboux transformation, we obtain two new types of exponential-and-rational mixed soliton solutions for the defocusing nonlocal nonlinear Schrodinger equation. We reveal that the first type of solution can display a large variety of inte ractions among two exponential solitons and two rational solitons, in which the standard elastic interaction properties are preserved and each soliton could be either the dark or antidark type. By developing the asymptotic analysis technique, we also find that the second type of solution can exhibit the elastic interactions among four mixed asymptotic solitons. But in sharp contrast to the common solitons, the asymptotic mixed solitons have the t-dependent velocities and their phase shifts before and after interaction also grow with |t| in the logarithmical manner. In addition, we discuss the degenerate cases for such two types of mixed soliton solutions when the four-soliton interaction reduces to a three-soliton or two-soliton interaction.
74 - C. Ozemir , F. Gungor 2005
Lie point symmetries of the 2+1-dimensional cubic Schrodinger equation to obtain new analytic solutions in a systematic manner. We present an analysis of the reduced ODEs, and in particular show that although the original equation is not integrable t hey typically can belong to the class of Painleve type equations.
We present doubly-periodic solutions of the infinitely extended nonlinear Schrodinger equation with an arbitrary number of higher-order terms and corresponding free real parameters. Solutions have one additional free variable parameter that allows to vary periods along the two axes. The presence of infinitely many free parameters provides many possibilities in applying the solutions to nonlinear wave evolution. Being general, this solution admits several particular cases which are also given in this work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا