ﻻ يوجد ملخص باللغة العربية
In the multiple testing context, a challenging problem is the estimation of the proportion $pi_0$ of true-null hypotheses. A large number of estimators of this quantity rely on identifiability assumptions that either appear to be violated on real data, or may be at least relaxed. Under independence, we propose an estimator $hat{pi}_0$ based on density estimation using both histograms and cross-validation. Due to the strong connection between the false discovery rate (FDR) and $pi_0$, many multiple testing procedures (MTP) designed to control the FDR may be improved by introducing an estimator of $pi_0$. We provide an example of such an improvement (plug-in MTP) based on the procedure of Benjamini and Hochberg. Asymptotic optimality results may be derived for both $hat{pi}_0$ and the resulting plug-in procedure. The latter ensures the desired asymptotic control of the FDR, while it is more powerful than the BH-procedure. Finally, we compare our estimator of $pi_0$ with other widespread estimators in a wide range of simulations. We obtain better results than other tested methods in terms of mean square error (MSE) of the proposed estimator. Finally, both asymptotic optimality results and the interest in tightly estimating $pi_0$ are confirmed (empirically) by results obtained with the plug-in MTP.
The lasso procedure is ubiquitous in the statistical and signal processing literature, and as such, is the target of substantial theoretical and applied research. While much of this research focuses on the desirable properties that lasso possesses---
We present an elementary mathematical method to find the minimax estimator of the Bernoulli proportion $theta$ under the squared error loss when $theta$ belongs to the restricted parameter space of the form $Omega = [0, eta]$ for some pre-specified c
In science, the most widespread statistical quantities are perhaps $p$-values. A typical advice is to reject the null hypothesis $H_0$ if the corresponding p-value is sufficiently small (usually smaller than 0.05). Many criticisms regarding p-values
We propose leave-out estimators of quadratic forms designed for the study of linear models with unrestricted heteroscedasticity. Applications include analysis of variance and tests of linear restrictions in models with many regressors. An approximati
In this paper, we study the classical problem of estimating the proportion of a finite population. First, we consider a fixed sample size method and derive an explicit sample size formula which ensures a mixed criterion of absolute and relative error