ﻻ يوجد ملخص باللغة العربية
We study the time until first occurrence, the first-passage time, of rare density fluctuations in diffusive systems. We approach the problem using a model consisting of many independent random walkers on a lattice. The existence of spatial correlations makes this problem analytically intractable. However, for a mean-field approximation in which the walkers can jump anywhere in the system, we obtain a simple asymptotic form for the mean first-passage time to have a given number k of particles at a distinguished site. We show numerically, and argue heuristically, that for large enough k, the mean-field results give a good approximation for first-passage times for systems with nearest-neighbour dynamics, especially for two and higher spatial dimensions. Finally, we show how the results change when density fluctuations anywhere in the system, rather than at a specific distinguished site, are considered.
The probability of trajectories of weakly diffusive processes to remain in the tubular neighbourhood of a smooth path is given by the Freidlin-Wentzell-Graham theory of large deviations. The most probable path between two states (the instanton) and t
We present a method to probe rare molecular dynamics trajectories directly using reinforcement learning. We consider trajectories that are conditioned to transition between regions of configuration space in finite time, like those relevant in the stu
The granular Leidenfrost effect (B. Meerson et al, Phys. Rev. Lett. {bf 91}, 024301 (2003), P. Eshuis et al, Phys. Rev. Lett. {bf 95}, 258001 (2005)) is the levitation of a mass of granular matter when a wall below the grains is vibrated giving rise
Sequence heterogeneity broadens the binding transition of a polymer onto a linear or planar substrate. This effect is analyzed in a real-space renormalization group scheme designed to capture the statistics of rare events. In the strongly disordered
Very often when studying non-equilibrium systems one is interested in analysing dynamical behaviour that occurs with very low probability, so called rare events. In practice, since rare events are by definition atypical, they are often difficult to a