ترغب بنشر مسار تعليمي؟ اضغط هنا

New Indicators for AGN Power: The Correlation Between [O IV] lambda 25.89 micron and Hard X-ray Luminosity for Nearby Seyfert Galaxies

506   0   0.0 ( 0 )
 نشر من قبل Marcio Mel\\'endez
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the relationship between the [O IV] lambda 25.89 micron emission line luminosities, obtained from Spitzer spectra, the X-ray continua in the 2-10 keV band, primarily from ASCA, and the 14-195 keV band obtained with the SWIFT/Burst Alert Telescope (BAT), for a sample of nearby (z < 0.08) Seyfert galaxies. For comparison, we have examined the relationship between the [O III] 5007, the 2-10 keV and the 14-195 keV luminosities for the same set of objects. We find that both the [O IV] and [O III] luminosities are well-correlated with the BAT luminosities. On the other hand, the [O III] luminosities are better-correlated with 2-10 keV luminosities than are those of [O IV]. When comparing [O IV] and [O III] luminosities for the different types of galaxies, we find that the Seyfert 2s have significantly lower [O III] to [O IV] ratios than the Seyfert 1s. We suggest that this is due to more reddening of the narrow line region (NLR) of the Seyfert 2s. Assuming Galactic dust to gas ratios, the average amount of extra reddening corresponds to a hydrogen column density of ~ few times 10^21 cm^-2, which is a small fraction of the X-ray absorbing columns in the Seyfert 2s. The combined effects of reddening and the X-ray absorption are the probable reason why the [O III] versus 2-10 keV correlation is better than the [O IV] versus 2-10 keV, since the [O IV] emission line is much less affected by extinction. Overall, we find the [O IV] to be an accurate and truly isotropic indicator of the power of the AGN. This suggests that it can be useful in deconvolving the contribution of the AGN and starburst to the spectrum of Compton-thick and/or X-ray weak sources.



قيم البحث

اقرأ أيضاً

We propose new diagnostics that utilize the [O IV] 25.89 $mu$m and nuclear (subarcsecond scale) 12 $mu$m luminosity ratio for identifying whether an AGN is deeply `buried in their surrounding material. Utilizing a sample of 16 absorbed AGNs at redshi fts lower than 0.03 in the Swift/BAT catalog observed with Suzaku, we find that AGNs with small scattering fractions ($<$0.5%) tend to show weaker [O IV]-to-12 $mu$m luminosity ratios than the average of Seyfert 2 galaxies. This suggests that this ratio is a good indicator for identifying buried AGNs. Then, we apply this criterion to 23 local ultra/luminous infrared galaxies (U/LIRGs) in various merger stages hosting AGNs. We find that AGNs in most of mid- to late-stage mergers are buried, while those in earlier stage ones (including non-merger) are not. This result suggests that the fraction of buried AGNs in U/LIRGs increases as the galaxy-galaxy interaction becomes more significant.
We compare [O IV] 25.89 micron emission line luminosities with very hard (10-200 keV) X-rays from Swift, Integral, and BeppoSAX for a complete sample of 89 Seyferts from the Revised Shapley-Ames sample. Using Seyfert 1s, we calibrate [O IV] as a meas ure of AGN intrinsic luminosity, for particular use in high-obscuration environments. With this calibration, we measure the average decrement in 14-195 keV X-ray to [O IV] luminosity ratio for Seyfert 2s compared to type 1s. We find a decrement of 3.1 +- 0.8 for Seyfert 2s, and a decrement of 5.0 +- 2.7 for known Compton-thick Seyfert 2s. These decrements imply column densities of approximately log N(H)=24.6 and 24.7 cm^-2, respectively. Thus, we infer that the average Seyfert 2 is more highly obscured and intrinsically more luminous than would be inferred even from the very hard X-rays. We demonstrate two applications of the hard X-ray to [O IV] ratio. We measure a column density for the extremely obscured NGC 1068 of log N(H)=25.3-25.4 cm^-2. Finally, by comparing [O IV] luminosities to total infrared luminosities for twelve bright ultraluminous infrared galaxies, we find that four have substantial AGN contributions.
The Infrared Space Observatory was used to search for a tracer of the warm and dense neutral interstellar medium, the [O I] 63.18 micron line, in four ultraluminous IRAS sources lying at redshifts between 0.6 and 1.4. While these sources are quasars, their infrared continuum emission suggests a substantial interstellar medium. No [O I] flux was securely detected after probing down to a 3 sigma sensitivity level sufficient for detecting line emission in starbursts with similar continuum emission. However, if the detection threshold is slightly relaxed, one target is detected with 2.7 sigma significance. For this radio-quiet quasar there is likely a substantial dense and warm interstellar medium; the upper limits for the three radio-loud sources do not preclude the same conclusion. Using a new, uniformly-processed database of the ISO extragalactic far-infrared spectroscopy observations, it is shown that nearby Seyfert galaxies typically have higher [O I]-to-far-infrared ratios than do normal star-forming galaxies, so the lack of strong [O I] 63 micron emission from these high-redshift ultraluminous sources cannot be attributed to their active cores.
144 - S. Chen , G. La Mura , M. Berton 2019
We present a detailed study of 11 narrow-line Seyfert 1 galaxies (NLS1s) from the Six-degree Field Galaxy Survey (6dFGS) that both have optical and X-ray spectroscopic observations. There are five complex NLS1s (C-NLS1s) and six simple NLS1s (S-NLS1s ). We propose a possible correlation between [O III] line asymmetry and X-ray complexity. The outflow or wind from the inner accretion disk is commonly present in NLS1s and mostly directed along the system axis. In C-NLS1s only weak wind effects are measured, the X-ray spectral complexity might be caused by the presence of ionized material in the wind. On the contrary, the wind in S-NLS1s is fast, the ionized material could be swept by such a strong wind, thus the complex feature is missing which results in a simple X-ray spectrum. Furthermore, this outflow scenario seems to be an inclination effect. Since the speed of the wind is higher in a small inclination while lower in a large inclination, S-NLS1s might be sources viewed at small angles while C-NLS1s might be sources viewed at large angles.
We present the host galaxy molecular gas properties of a sample of 213 nearby (0.01<z< 0.05) hard X-ray selected AGN galaxies, drawn from the 70-month catalog of Swift-BAT, with 200 new CO(2-1) line measurements obtained with the JCMT and APEX telesc opes. We find that AGN in massive galaxies tend to have more molecular gas, and higher gas fractions, than inactive galaxies matched in stellar mass. When matched in star formation, we find AGN galaxies show no difference from inactive galaxies with no evidence of AGN feedback affecting the molecular gas. The higher molecular gas content is related to AGN galaxies hosting a population of gas-rich early types with an order of magnitude more molecular gas and a smaller fraction of quenched, passive galaxies (~5% vs. 49%). The likelihood of a given galaxy hosting an AGN (L_bol>10^44 erg/s) increases by ~10-100 between a molecular gas mass of 10^8.7 Msun and 10^10.2 Msun. Higher Eddington ratio AGN galaxies tend to have higher molecular gas masses and gas fractions. Higher column density AGN galaxies (Log NH>23.4) are associated with lower depletion timescales and may prefer hosts with more gas centrally concentrated in the bulge that may be more prone to quenching than galaxy wide molecular gas. The significant average link of host galaxy molecular gas supply to SMBH growth may naturally lead to the general correlations found between SMBHs and their host galaxies, such as the correlations between SMBH mass and bulge properties and the redshift evolution of star formation and SMBH growth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا