ترغب بنشر مسار تعليمي؟ اضغط هنا

A Unified Semi-Supervised Dimensionality Reduction Framework for Manifold Learning

466   0   0.0 ( 0 )
 نشر من قبل Ratthachat Chatpatanasiri
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a general framework of semi-supervised dimensionality reduction for manifold learning which naturally generalizes existing supervised and unsupervised learning frameworks which apply the spectral decomposition. Algorithms derived under our framework are able to employ both labeled and unlabeled examples and are able to handle complex problems where data form separate clusters of manifolds. Our framework offers simple views, explains relationships among existing frameworks and provides further extensions which can improve existing algorithms. Furthermore, a new semi-supervised kernelization framework called ``KPCA trick is proposed to handle non-linear problems.



قيم البحث

اقرأ أيضاً

379 - Xuanqing Liu , Si Si , Xiaojin Zhu 2019
In this paper, we proposed a general framework for data poisoning attacks to graph-based semi-supervised learning (G-SSL). In this framework, we first unify different tasks, goals, and constraints into a single formula for data poisoning attack in G- SSL, then we propose two specialized algorithms to efficiently solve two important cases --- poisoning regression tasks under $ell_2$-norm constraint and classification tasks under $ell_0$-norm constraint. In the former case, we transform it into a non-convex trust region problem and show that our gradient-based algorithm with delicate initialization and update scheme finds the (globally) optimal perturbation. For the latter case, although it is an NP-hard integer programming problem, we propose a probabilistic solver that works much better than the classical greedy method. Lastly, we test our framework on real datasets and evaluate the robustness of G-SSL algorithms. For instance, on the MNIST binary classification problem (50000 training data with 50 labeled), flipping two labeled data is enough to make the model perform like random guess (around 50% error).
We extend semi-supervised learning to the problem of domain adaptation to learn significantly higher-accuracy models that train on one data distribution and test on a different one. With the goal of generality, we introduce AdaMatch, a method that un ifies the tasks of unsupervised domain adaptation (UDA), semi-supervised learning (SSL), and semi-supervised domain adaptation (SSDA). In an extensive experimental study, we compare its behavior with respective state-of-the-art techniques from SSL, SSDA, and UDA on vision classification tasks. We find AdaMatch either matches or significantly exceeds the state-of-the-art in each case using the same hyper-parameters regardless of the dataset or task. For example, AdaMatch nearly doubles the accuracy compared to that of the prior state-of-the-art on the UDA task for DomainNet and even exceeds the accuracy of the prior state-of-the-art obtained with pre-training by 6.4% when AdaMatch is trained completely from scratch. Furthermore, by providing AdaMatch with just one labeled example per class from the target domain (i.e., the SSDA setting), we increase the target accuracy by an additional 6.1%, and with 5 labeled examples, by 13.6%.
Manifold learning-based encoders have been playing important roles in nonlinear dimensionality reduction (NLDR) for data exploration. However, existing methods can often fail to preserve geometric, topological and/or distributional structures of data . In this paper, we propose a deep manifold learning framework, called deep manifold transformation (DMT) for unsupervised NLDR and embedding learning. DMT enhances deep neural networks by using cross-layer local geometry-preserving (LGP) constraints. The LGP constraints constitute the loss for deep manifold learning and serve as geometric regularizers for NLDR network training. Extensive experiments on synthetic and real-world data demonstrate that DMT networks outperform existing leading manifold-based NLDR methods in terms of preserving the structures of data.
Dimension reduction (DR) aims to learn low-dimensional representations of high-dimensional data with the preservation of essential information. In the context of manifold learning, we define that the representation after information-lossless DR prese rves the topological and geometric properties of data manifolds formally, and propose a novel two-stage DR method, called invertible manifold learning (inv-ML) to bridge the gap between theoretical information-lossless and practical DR. The first stage includes a homeomorphic sparse coordinate transformation to learn low-dimensional representations without destroying topology and a local isometry constraint to preserve local geometry. In the second stage, a linear compression is implemented for the trade-off between the target dimension and the incurred information loss in excessive DR scenarios. Experiments are conducted on seven datasets with a neural network implementation of inv-ML, called i-ML-Enc. Empirically, i-ML-Enc achieves invertible DR in comparison with typical existing methods as well as reveals the characteristics of the learned manifolds. Through latent space interpolation on real-world datasets, we find that the reliability of tangent space approximated by the local neighborhood is the key to the success of manifold-based DR algorithms.
Federated Semi-Supervised Learning (FedSSL) has gained rising attention from both academic and industrial researchers, due to its unique characteristics of co-training machine learning models with isolated yet unlabeled data. Most existing FedSSL met hods focus on the classical scenario, i.e, the labeled and unlabeled data are stored at the client side. However, in real world applications, client users may not provide labels without any incentive. Thus, the scenario of labels at the server side is more practical. Since unlabeled data and labeled data are decoupled, most existing FedSSL approaches may fail to deal with such a scenario. To overcome this problem, in this paper, we propose FedCon, which introduces a new learning paradigm, i.e., contractive learning, to FedSSL. Experimental results on three datasets show that FedCon achieves the best performance with the contractive framework compared with state-of-the-art baselines under both IID and Non-IID settings. Besides, ablation studies demonstrate the characteristics of the proposed FedCon framework.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا