V2051 Oph after superoutburst: out-of-plane material and the superhump light source


الملخص بالإنكليزية

We performed a detailed spectroscopic analysis of the dwarf nova V2051 Oph at the end of its 1999 superoutburst. We studied and interpreted the simultaneous behaviour of various emission lines. We obtained high-resolution echelle spectroscopic data at ESOs NTT with EMMI, covering the spectral range of 4000--7500 Angstrom. The analysis was performed using standard IRAF tools. The indirect imaging technique of Doppler tomography was applied, in order to map the accretion disc and distinguish between the different emission sources. The spectra are characterised by strong Balmer emission, together with lines of HeI and the iron triplet FeII 42. All lines are double-peaked, but the blue-to-red peak strength and central absorption depth vary. The primarys velocity was found to be 84.9 km/sec. The spectrograms of the emission lines reveal the prograde rotation of a disc-like emitting region and, for the Balmer and HeI lines, an enhancement of the red-wing during eclipse indicates a bright spot origin. The modulation of the double-peak separation shows a highly asymmetric disc with non-uniform emissivity. This is confirmed by the Doppler maps, which apart from the disc and bright spot emission also indicate an additional region of enhanced emission in the 4th quadrant (+Vx, -Vy), which we associate with the superhump light source. Given the behaviour of the iron triplet and its distinct differences from the rest of the lines, we attribute its existence to an extended gas region above the disc. Its origin can be explained through the fluorescence mechanism.

تحميل البحث