ﻻ يوجد ملخص باللغة العربية
We establish the orbital stability of the black soliton, or kink solution, $v_0(x) = th big(frac{x}{sqrt{2}} big)$, to the one-dimensional Gross-Pitaevskii equation, with respect to perturbations in the energy space.
We study the Cauchy problem for the 3D Gross-Pitaevskii equation. The global well-posedness in the natural energy space was proved by Gerard cite{Gerard}. In this paper we prove scattering for small data in the same space with some additional angular
The purpose of this paper is to provide a rigorous mathematical proof of the existence of travelling wave solutions to the Gross-Pitaevskii equation in dimensions two and three. Our arguments, based on minimization under constraints, yield a full bra
We consider the 3D Gross-Pitaevskii equation begin{equation} onumber ipartial_t psi +Delta psi+(1-|psi|^2)psi=0 text{ for } psi:mathbb{R}times mathbb{R}^3 rightarrow mathbb{C} end{equation} and construct traveling waves solutions to this equation. Th
We show how to adapt the ideas of local energy and momentum conservation in order to derive modifications to the Gross-Pitaevskii equation which can be used phenomenologically to describe irreversible effects in a Bose-Einstein condensate. Our approa
We provide a derivation of a more accurate version of the stochastic Gross-Pitaevskii equation, as introduced by Gardiner et al. (J. Phys. B 35,1555,(2002). The derivation does not rely on the concept of local energy and momentum conservation, and is