ترغب بنشر مسار تعليمي؟ اضغط هنا

Semistablity of syzygy bundles on projective spaces in positive characteristics

378   0   0.0 ( 0 )
 نشر من قبل Vijaylaxmi Trivedi
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف V. Trivedi




اسأل ChatGPT حول البحث

In char $k = p >0$, A. Langer proved a strong restriction theorem (in the style of H. Flenner) for semistable sheaves to a very general hypersurface of degree $d$, on certain varieties, with the condition that `char $k > d$. He remarked that to remove this condition, it is enough to answer either of the following questions affirmatively: {it For the syzygy bundle $sV_d$ of ${mathcal O}(d)$, is $sV_d$ semistable for arbitrary $n, d$ and $p = {char} k$?, or is there a good estimate on $mu_{max}(sV_d^*)$?} Here we prove that (1) the bundle $sV_d$ is semistable, for a certain infinite set of integers $dgeq 0$, and (2) for arbitrary $d$, there is a good enough estimate on $mu_{max}(sV_d^*)$ in terms of $d$ and $n$. In particular one obtains Langers theorem, in arbitrary characeristic.



قيم البحث

اقرأ أيضاً

194 - Shijie Shang 2021
We prove that the kernel bundle of the evaluation morphism of global sections, namely the syzygy bundle, of a sufficiently ample line bundle on a smooth projective variety is slope stable with respect to any polarization. This settles a conjecture of Ein-Lazarsfeld-Mustopa.
It is a longstanding problem in Algebraic Geometry to determine whether the syzygy bundle $E_{d_1,...,d_n}$ on $mathbb{P}^N$ defined as the kernel of a general epimorphism [phi:mathcal{O}(-d_1)oplus...oplusmathcal{O}(-d_n) tomathcal{O}] is (semi)stab le. In this thesis, attention is restricted to the case of syzygy bundles $mathrm{Syz}(f_1,...,f_n)$ on $mathbb{P}^N$ associated to $n$ generic forms $f_1,...,f_nin K[X_0,...,X_N]$ of the same degree $d$, for ${Nge2}$. The first goal is to prove that $mathrm{Syz}(f_1,...,f_n)$ is stable if [N+1le nletbinom{d+N}{N},] except for the case ${(N,n,d)=(2,5,2)}$. The second is to study moduli spaces of stable rank ${n-1}$ vector bundles on $mathbb{P}^N$ containing syzygy bundles. In a joint work with Laura Costa and Rosa Mar{i}a Miro-Roig, we prove that $N$, $d$ and $n$ are as above, then the syzygy bundle $mathrm{Syz}(f_1,...,f_n)$ is unobstructed and it belongs to a generically smooth irreducible component of dimension ${ntbinom{d+N}{N}-n^2}$, if ${Nge3}$, and ${ntbinom{d+2}{2}+ntbinom{d-1}{2}-n^2}$, if ${N=2}$. The results in chapter 3, for $Nge3$, were obtained independently by Iustin Coandu{a} in arXiv:0909.4435.
87 - Zhiming Lin 2017
We assume that $mathcal{E}$ is a rank $r$ Ulrich bundle for $(P^n, mathcal{O}(d))$. The main result of this paper is that $mathcal{E}(i)otimes Omega^{j}(j)$ has natural cohomology for any integers $i in mathbb{Z}$ and $0 leq j leq n$, and every Ulric h bundle $mathcal{E}$ has a resolution in terms of $n$ of the trivial bundle over $P^n$. As a corollary, we can give a necessary and sufficient condition for Ulrich bundles if $n leq 3$, which can be used to find some new examples, i.e., rank $2$ bundles for $(P^3, mathcal{O}(2))$ and rank $3$ bundles for $(P^2, mathcal{O}(3))$.
168 - Rong Du , Xinyi Fang , Yun Gao 2020
We consider a uniform $r$-bundle $E$ on a complex rational homogeneous space $X$ %over complex number field $mathbb{C}$ and show that if $E$ is poly-uniform with respect to all the special families of lines and the rank $r$ is less than or equal to some number that depends only on $X$, then $E$ is either a direct sum of line bundles or $delta_i$-unstable for some $delta_i$. So we partially answer a problem posted by Mu~{n}oz-Occhetta-Sol{a} Conde. In particular, if $X$ is a generalized Grassmannian $mathcal{G}$ and the rank $r$ is less than or equal to some number that depends only on $X$, then $E$ splits as a direct sum of line bundles. We improve the main theorem of Mu~{n}oz-Occhetta-Sol{a} Conde when $X$ is a generalized Grassmannian by considering the Chow rings. Moreover, by calculating the relative tangent bundles between two rational homogeneous spaces, we give explicit bounds for the generalized Grauert-M{u}lich-Barth theorem on rational homogeneous spaces.
We show that given integers $N$, $d$ and $n$ such that ${Nge2}$, ${(N,d,n) e(2,2,5)}$, and ${N+1le nletbinom{d+N}{N}}$, there is a family of $n$ monomials in $K[X_0,ldots,X_N]$ of degree $d$ such that their syzygy bundle is stable. Case ${Nge3}$ was obtained independently by Coandv{a} with a different choice of families of monomials [Coa09]. For ${(N,d,n)=(2,2,5)}$, there are $5$ monomials of degree~$2$ in $K[X_0,X_1,X_2]$ such that their syzygy bundle is semistable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا