ﻻ يوجد ملخص باللغة العربية
In the algebraic context, we show that null Osserman, spacelike Osserman, and timelike Osserman are equivalent conditions for a model of signature (2,2). We also classify the null Jordan Osserman models of signature (2,2). In the geometric context, we show that a pseudo-Riemannian manifold of signature (2,2) is null Jordan Osserman if and only if either it has constant sectional curvature or it is locally a complex space form.
We exhibit Osserman metrics with non-nilpotent Jacobi operators and with non-trivial Jordan normal form in neutral signature (n,n) for any n which is at least 3. These examples admit a natural almost para-Hermitian structure and are semi para-complex
It is shown that if a compact four-dimensional manifold with metric of neutral signature is Jordan-Osserman, then it is either of constant sectional curvature or Ricci flat.
One says that a smooth manifold M is a pseudo-Riemannian manifold of signature (p,q) if the tangent bundle TM is equipped with a smooth non-degenerate symmetric inner product g of signature (p,q). Similarly one says that M is an affine manifold if TM
We characterize Osserman and conformally Osserman Riemannian manifolds with the local structure of a warped product. By means of this approach we analyze the twisted product structure and obtain, as a consequence, that the only Osserman manifolds whi
We derive the Chern-Gauss-Bonnet Theorem for manifolds with smooth non-degenerate boundary in the pseudo-Riemannian context from the corresponding result in the Riemannian setting by examining the Euler-Lagrange equations associated to the Pfaffian o