Monogamy equality in $2otimes 2 otimes d$ quantum systems


الملخص بالإنكليزية

There is an interesting property about multipartite entanglement, called the monogamy of entanglement. The property can be shown by the monogamy inequality, called the Coffman-Kundu-Wootters inequality [Phys. Rev. A {bf 61}, 052306 (2000); Phys. Rev. Lett. {bf 96}, 220503 (2006)], and more explicitly by the monogamy equality in terms of the concurrence and the concurrence of assistance, $mathcal{C}_{A(BC)}^2=mathcal{C}_{AB}^2+(mathcal{C}_{AC}^a)^2$, in the three-qubit system. In this paper, we consider the monogamy equality in $2otimes 2 otimes d$ quantum systems. We show that $mathcal{C}_{A(BC)}=mathcal{C}_{AB}$ if and only if $mathcal{C}_{AC}^a=0$, and also show that if $mathcal{C}_{A(BC)}=mathcal{C}_{AC}^a$ then $mathcal{C}_{AB}=0$, while there exists a state in a $2otimes 2 otimes d$ system such that $mathcal{C}_{AB}=0$ but $mathcal{C}_{A(BC)}>mathcal{C}_{AC}^a$.

تحميل البحث