ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement and transport anomalies in nanowires

136   0   0.0 ( 0 )
 نشر من قبل Anton Ramsak
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A shallow potential well in a near-perfect quantum wire will bind a single-electron and behave like a quantum dot, giving rise to spin-dependent resonances of propagating electrons due to Coulomb repulsion and Pauli blocking. It is shown how this may be used to generate full entanglement between static and flying spin-qubits near resonance in a two-electron system via singlet or triplet spin-filtering. In a quantum wire with many electrons, the same pairwise scattering may be used to explain conductance, thermopower and shot-noise anomalies, provided the temperature/energy scale is sufficiently high for Kondo-like many-body effects to be negligible.



قيم البحث

اقرأ أيضاً

We study t Hooft anomalies of discrete groups in the framework of (1+1)-dimensional multiscale entanglement renormalization ansatz states on the lattice. Using matrix product operators, general topological restrictions on conformal data are derived. An ansatz class allowing for optimization of MERA with an anomalous symmetry is introduced. We utilize this class to numerically study a family of Hamiltonians with a symmetric critical line. Conformal data is obtained for all irreducible projective representations of each anomalous symmetry twist, corresponding to definite topological sectors. It is numerically demonstrated that this line is a protected gapless phase. Finally, we implement a duality transformation between a pair of critical lines using our subclass of MERA.
We study a double-nanowire setup proximity coupled to an $s$-wave superconductor and search for the bulk signatures of the topological phase transition that can be observed experimentally, for example, with an STM tip. Three bulk quantities, namely, the charge, the spin polarization, and the pairing amplitude of intrawire superconductivity are studied in this work. The spin polarization and the pairing amplitude flip sign as the system undergoes a phase transition from the trivial to the topological phase. In order to identify promising ways to observe bulk signatures of the phase transition in transport experiments, we compute the spin current flowing between a local spin-polarized probe, such as an STM tip, and the double-nanowire system in the Keldysh formalism. We find that the spin current contains information about the sign flip of the bulk spin polarization and can be used to determine the topological phase transition point.
166 - A.Ron , E.Maniv , D.Graf 2014
Resistance as a function of temperature down to 20mK and magnetic fields up to 18T for various carrier concentrations is measured for nanowires made from the SrTiO3/LaAlO3 interface using a hard mask shadow deposition technique. The narrow width of t he wires (of the order of 50nm) allows us to separate out the magnetic effects from the dominant superconducting ones at low magnetic fields. At this regime hysteresis loops are observed along with the superconducting transition. From our data analysis we find that the magnetic order probed by the giant magnetoresistance (GMR) effect vanishes at TCurie = 954 mK. This order is not a simple ferromagnetic state but consists of domains with opposite magnetization having a preferred in-plane orientation.
We analyze Andreev bound states (ABSs) that form in normal sections of a Rashba nanowire that is only partially covered by a superconducting layer. These ABSs are localized close to the ends of the superconducting section and can be pinned to zero en ergy over a wide range of magnetic field strengths even if the nanowire is in the non-topological regime. For finite-size nanowires (typically $lesssim 1$ $mu$m in current experiments), the ABS localization length is comparable to the length of the nanowire. The probability density of an ABS is therefore non-zero throughout the nanowire and differential-conductance calculations reveal a correlated zero-bias peak (ZBP) at both ends of the nanowire. When a second normal section hosts an additional ABS at the opposite end of the superconducting section, the combination of the two ABSs can mimic the closing and reopening of the bulk gap in local and non-local conductances accompanied by the appearance of the ZBP. These signatures are reminiscent of those expected for Majorana bound states (MBSs) but occur here in the non-topological regime. Our results demonstrate that conductance measurements of correlated ZBPs at the ends of a typical superconducting nanowire or an apparent closing and reopening of the bulk gap in the local and non-local conductance are not conclusive indicators for the presence of MBSs.
305 - Xu Zhang , Heshan Yu , Ge He 2016
Superconductivity research is like running a marathon. Three decades after the discovery of high-Tc cuprates, there have been mass data generated from transport measurements, which bring fruitful information. In this review, we give a brief summary o f the intriguing phenomena reported in electron-doped cuprates from the aspect of electrical transport as well as the complementary thermal transport. We attempt to sort out common features of the electron-doped family, e.g. the strange metal, negative magnetoresistance, multiple sign reversals of Hall in mixed state, abnormal Nernst signal, complex quantum criticality. Most of them have been challenging the existing theories, nevertheless, a unified diagram certainly helps to approach the nature of electron-doped cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا