ترغب بنشر مسار تعليمي؟ اضغط هنا

Element substitution effect in transition metal oxypnictide Re(O$_{1-x}$F$_x$)TAs (Re=rare earth, T=transition metal)

189   0   0.0 ( 0 )
 نشر من قبل Nan Lin Wang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Different element substitution effects in transition metal oxypnictide Re(O$_{1-x}$F$_x$)TAs with Re=La, Ce, Nd, Eu, Gd, Tm, T=Fe, Ni, Ru, were studied. Similar to the La- or Ce-based systems, we found that the pure NdOFeAs shows a strong resistivity anomaly near 145 K, which was ascribed to the spin-density-wave instability. Electron doping by F increases T$_c$ to about 50 K. While in the case of Gd, the T$_c$ is reduced below 10 K. The tetragonal ZrCuSiAs-type structure could not be formed for Eu or Tm substitution in our preparing process. For Ni-based case, although both pure and F-doped LaONiAs are superconducting, no superconductivity was found when La was replaced by Ce in both cases, instead a ferromagnetic ordering transition was likely to form at low temperature in F-doped sample. We also synthesized LaO$_{1-x}$F$_x$RuAs and CeO$_{1-x}$F$_x$RuAs compounds. Metallic behavior was observed down to 4 K.



قيم البحث

اقرأ أيضاً

175 - T. Dong , Z. G. Chen , R. H. Yuan 2010
Single crystals of LaFeAsO, NdFeAsO, and SmFeAsO have been prepared by means of a NaAs flux growth technique and studied by optical spectroscopy measurements. We show that the spectral features corresponding to the partial energy gaps in the spin-den sity-wave (SDW) state are present below the structural phase transition. This indicates that the electronic state below the structural phase transition is already very close to that in the SDW state. We also show that in-plane infrared phonon modes display systematic shifts towards high frequency upon rare-earth element substitutions for La, suggesting a strong enhancement of the bonding strength. Furthermore, an asymmetric line-shape of the in-plane phonon mode is observed, implying the presence of an electron-phonon coupling effect in Fe-pnictides.
53 - Nicola Magnani 2003
Rare-earth (RE) based compounds and alloys are of great interest both for their fundamental physical properties and for applications. In order to tailor the required compounds for a specific task, one must be able to predict the energy level structur e and transition intensities for any magnetic ion in any crystalline environment. The crystal-field (CF) analysis is one of the most powerful theoretical methods to deal with the physics of magnetic ions. In the present work, this technique is used to analyze peculiar physical properties of some materials employed in the production of new-generation solid-state laser and high-performance permanent magnets.
Here we report a new class of superconductors prepared by high pressure synthesis in the quaternary family ReFeAsO1-delta (Re = Sm, Nd, Pr, Ce, La) without fluorine doping. The onset superconducting critical temperature (Tc) in these compounds increa ses with the reduction of Re atom size, and the highest Tc obtained so far is 55 K in SmFeAsO1-delta. For the NdFeAsO1-delta system with different oxygen concentration a dome-shaped phase diagram was found.
Dependence of superconducting properties of (Ca,RE)(Fe,TM)As2 [(Ca,RE)112, TM: Co, Ni)] on RE elements (RE = La-Gd) was systematically investigated. Improvement of superconducting properties by Co or Ni co-doping was observed for all (Ca,RE)112, whic h is similar to Co-co-doped (Ca,La)112 or (Ca,Pr)112. Tc of Co-co-doped samples decreased from 38 K for RE = La to 29 K for RE = Gd with decreasing ionic radii of RE3+. However, Co-co-doped (Ca,Eu)112 showed exceptionally low Tc = 21 K probably due to the co-existence of Eu3+ and Eu2+ suggested by longer interlayer distance dFe-Fe of (Ca,Eu)112 than other (Ca,RE)112.
Magnetic atoms on heavy-element superconducting substrates are potential building blocks for realizing topological superconductivity in one- and two-dimensional atomic arrays. Their localized magnetic moments induce so-called Yu-Shiba-Rusinov (YSR) s tates inside the energy gap of the substrate. In the dilute limit, where the electronic states of the array atoms are only weakly coupled, proximity of the YSR states to the Fermi energy is essential for the formation of topological superconductivity in the band of YSR states. Here, we reveal via scanning tunnel spectroscopy and ab initio calculations of a series of 3d transition metal atoms (Mn, Fe, Co) adsorbed on the heavy-element superconductor Re that the increase of the Kondo coupling and sign change in magnetic anisotropy with d-state filling is accompanied by a shift of the YSR states through the energy gap of the substrate and a crossing of the Fermi level. The uncovered systematic trends enable the identification of the most promising candidates for the realization of topological superconductivity in arrays of similar systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا