ﻻ يوجد ملخص باللغة العربية
Pulsed-field magnetization experiments (fields $B$ of up to 85 T and temperatures $T$ down to 0.4 K) are reported on nine organic Cu-based two-dimensional (2D) Heisenberg magnets. All compounds show a low-$T$ magnetization that is concave as a function of $B$, with a sharp ``elbow transition to a constant value at a field $B_{rm c}$. Monte-Carlo simulations including a finite interlayer exchange energy $J_{perp}$ quantitatively reproduce the data; the concavity indicates the effective dimensionality and $B_{rm c}$ is an accurate measure of the in-plane exchange energy $J$. Using these values and Neel temperatures measured by muon-spin rotation, it is also possible to obtain a quantitative estimate of $|J_{perp}/J|$. In the light of these results, it is suggested that in magnets of the form [Cu(HF$_2$)(pyz)$_2$]X, where X is an anion, the sizes of $J$ and $J_{perp}$ are controlled by the tilting of the pyrazine (pyz) molecule with respect to the 2D planes.
The correlated spin dynamics and the temperature dependence of the correlation length $xi(T)$ in two-dimensional quantum ($S=1/2$) Heisenberg antiferromagnets (2DQHAF) on square lattice are discussed in the light of experimental results of proton spi
We present an investigation of the effect of randomizing exchange strengths in the $S=1/2$ square lattice quasi-two-dimensional quantum Heisenberg antiferromagnet (QuinH)$_2$Cu(Cl$_{x}$Br$_{1-x}$)$_{4}cdot$2H$_2$O (QuinH$=$Quinolinium, C$_9$H$_8$N$^+
Frustrated magnets in high magnetic field have a long history of offering beautiful surprises to the patient investigator. Here we present the results of extensive classical Monte Carlo simulations of a variety of models of two dimensional magnets in
A perturbation spin-wave theory for the quantum Heisenberg antiferromagnets on a square lattice is proposed to calculate the uniform static magnetic susceptibility at finite temperatures, where a divergence in the previous theories due to an artifici
Muon spin rotation and relaxation ($mu$SR) experiments have been carried out to characterize magnetic and superconducting ground states in the Pr$_{1-x}$Nd$_x$Os$_4$Sb$_{12}$ alloy series. In the ferromagnetic end compound NdOs$_4$Sb$_{12}$ the spont