ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of sp carbon chain interaction with silver nanoparticles by Surface Enhanced Raman Scattering

258   0   0.0 ( 0 )
 نشر من قبل Carlo Spartaco Casari
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Surface Enhanced Raman Spectroscopy (SERS) is exploited here to investigate the interaction of isolated sp carbon chains (polyynes) in a methanol solution with silver nanoparticles. Hydrogen-terminated polyynes show a strong interaction with silver colloids used as the SERS active medium revealing a chemical SERS effect. SERS spectra after mixing polyynes with silver colloids show a noticeable time evolution. Experimental results, supported by density functional theory (DFT) calculations of the Raman modes, allow us to investigate the behavior and stability of polyynes of different lengths and the overall sp conversion towards sp2 phase.



قيم البحث

اقرأ أيضاً

Recently, studies have been carried out on attempts to combine surface-enhanced Surface-enhanced Raman spectroscopy (SERS) substrates that can be based on either localized surface plasmon (LSP) or surface plasmon polaritons (SPP) structures. By combi ning these two systems, the drawbacks of each other can be solved. However, the manufacturing methods involved so far are sophisticated, labor-intensive, expensive, and also technically demanding. We propose a facile method for the fabrication of a flexible plasmonic nanoslit SERS sensor. We utilized the pattern on periodic optical disks (DVD-R) as a cheap substitute for printing the periodic pattern on PDMS with soft imprint lithography. Ag nanoslit (AgNS) was fabricated by serial bideposition using a dynamic oblique angle deposition (DOD) technique. The nanoslit structures were physically and optically characterized, and the experimental results were compared to the numerical simulation studies; Monte Carlo and the finite-difference time-domain (FDTD) simulation. The Ag nanoslit structure showed an excellent SERS enhancement, and its biosensing capability was demonstrated by the sensing of bilirubin.
We synthesized three-dimensional nanoporous graphene films by a chemical vapor deposition method with nanoporous copper as a catalytic substrate. The resulting nanoporous graphene has the same average pore size as the underlying copper substrate. Our surface-enhanced Raman scattering (SERS) investigation indicates that the nanoporosity of graphene significantly improves the SERS efficiency of graphene as a substrate as compared to planar graphene substrates.
A novel form of amorphous carbon with sp-sp2 hybridization has been recently produced by supersonic cluster beam deposition showing the presence in the film of both polyynic and cumulenic species [L. Ravagnan et al. Phys. Rev. Lett. 98, 216103 (2007) ]. Here we present a in situ Raman characterization of the low frequency vibrational region (400-800 cm-1) of sp-sp2 films at different temperatures. We report the presence of two peaks at 450 cm-1 and 720 cm-1. The lower frequency peak shows an evolution with the variation of the sp content and it can be attributed, with the support of density functional theory (DFT) simulations, to bending modes of sp linear structures. The peak at 720 cm-1 does not vary with the sp content and it can be attributed to a feature in the vibrational density of states activated by the disorder of the sp2 phase.
In this paper, we report our study on gold (Au) films with different thicknesses deposited on single layer graphene (SLG) as surface enhanced Raman scattering (SERS) substrates for the characterization of rhodamine (R6G) molecules. We find that an Au film with a thickness of ~7 nm deposited on SLG is an ideal substrate for SERS, giving the strongest Raman signals for the molecules and the weakest photoluminescence (PL) background. While Au films effectively enhance both the Raman and PL signals of molecules, SLG effectively quenches the PL signals from the Au film and molecules. The former is due to the electromagnetic mechanism involved while the latter is due to the strong resonance energy transfer from Au to SLG. Hence, the combination of Au films and SLG can be widely used in the characterization of low concentration molecules with relatively weak Raman signals.
Surface-enhanced Raman spectroscopy is a powerful and versatile sensing method with a detection limit down to the single molecule level. In this article, we demonstrate how topology optimization (TopOpt) can be used for designing surface enhanced Ram an scattering (SERS) substrates adhering to realistic fabrication constraints. As an example, we experimentally demonstrated a SERS enhancement factor of 5*10e4 for the 604 cm-1 Raman line of rhodamine 6G using metal nanostructures with a critical dimension of 20 nm. We then show that, by relaxing the fabrication constraints, TopOpt may be used to design SERS substrates with orders of magnitude larger enhancement factor. The results validate topology optimization as an effective method for engineering nanostructures with optimal performance and fabrication tolerance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا