ترغب بنشر مسار تعليمي؟ اضغط هنا

Saturation of $E_T/N_{ch}$ and Freeze-Out Criteria in Heavy-Ion Collisions

142   0   0.0 ( 0 )
 نشر من قبل Raghunath Sahoo
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف J. Cleymans




اسأل ChatGPT حول البحث

The pseudorapidity densities of transverse energy, the charged particle multiplicity and their ratios, $E_T/N_{ch}$, are estimated at mid-rapidity, in a statistical-thermal model based on chemical freeze-out criteria, for a wide range of energies from GSI-AGS-SPS to RHIC. It has been observed that in nucleus-nucleus collisions, $E_T/N_{ch}$ increases rapidly with beam energy and remains approximately constant at about a value of 800 MeV for beam energies from SPS to RHIC. $E_T/N_{ch}$ has been observed to be almost independent of centrality at all measured energies. The statistical-thermal model describes the energy dependence as well as the centrality independence, qualitatively well. The values of $E_T/N_{ch}$ are related to the chemical freeze-out criterium, $E/N approx 1 GeV$ valid for primordial hadrons. We have studied the variation of the average mass $(<MASS>), N_{decays}/N_{primordial}, N_{ch}/N_{decays}$ and $E_T/N_{ch}$ with $sqrt{s_{NN}}$ for all freeze-out criteria discussed in literature. These observables show saturation around SPS and higher $sqrt{s_{NN}}$, like the chemical freeze-out temperature ($T_{ch}$).



قيم البحث

اقرأ أيضاً

For beam energies from SPS to RHIC, the transverse energy per charged particle, $E_T/N_{textrm{ch}}$, saturates at a value of approximately 0.8 GeV. A direct connection between this value and the freeze-out criterium $E/N approx 1$ GeV for the primor dial energy and particle number in the hadronic resonance gas model is established.
High energy heavy-ion collisions in laboratory produce a form of matter that can test Quantum Chromodynamics (QCD), the theory of strong interactions, at high temperatures. One of the exciting possibilities is the existence of thermodynamically disti nct states of QCD, particularly a phase of de-confined quarks and gluons. An important step in establishing this new state of QCD is to demonstrate that the system has attained thermal equilibrium. We present a test of thermal equilibrium by checking that the mean hadron yields produced in the small impact parameter collisions as well as grand canonical fluctuations of conserved quantities give consistent temperature and baryon chemical potential for the last scattering surface. This consistency for moments up to third order of the net-baryon number, charge, and strangeness is a key step in the proof that the QCD matter produced in heavy-ion collision attains thermal equilibrium. It is a clear indication for the first time, using fluctuation observables, that a femto-scale system attains thermalization. The study also indicates that the relaxation time scales for the system are comparable to or smaller than the life time of the fireball.
In relativistic nucleus-nucleus collisions the transverse energy per charged particle, E_T/N_ch, increases rapidly with beam energy and remains approximately constant at about 800 MeV for beam energies from SPS to RHIC. It is shown that the hadron re sonance gas model describes the energy dependence, as well as the lack of centrality dependence, qualitatively. The values of E_T/N_ch are related to the chemical freeze-out criterium E/N about 1 GeV valid for primordial hadrons.
A QCD phase transition may reflect in a inhomogeneous decoupling surface of hadrons produced in relativistic heavy-ion collisions. We show that due to the non-linear dependence of the particle densities on the temperature and baryon-chemical potentia l such inhomogeneities should be visible even in the integrated, inclusive abundances. We analyze experimental data from Pb+Pb collisions at CERN-SPS and Au+Au collisions at BNL-RHIC to determine the amplitude of inhomogeneities.
We study chemical freeze-out parameters for heavy-ion collisions by performing two different thermal analyses. We analyze results from thermal fits for particle yields, as well as, net-charge fluctuations in order to characterize the chemical freeze- out. The Hadron Resonance Gas (HRG) model is employed for both methods. By separating the light hadrons from the strange hadrons in thermal fits, we study the proposed flavor hierarchy. For the net-charge fluctuations, we calculate the mean-over-variance ratio of the net-kaon fluctuations in the HRG model at the five highest energies of the RHIC Beam Energy Scan (BES) for different particle data lists. We compare these results with recent experimental data from the STAR collaboration in order to extract sets of chemical freeze-out parameters for each list. We focused on particle lists which differ largely in the number of resonant states. By doing so, our analysis determines the effect of the amount of resonances included in the HRG model on the freeze-out conditions. Our findings have potential impact on various other models in the field of relativistic heavy-ion collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا