ترغب بنشر مسار تعليمي؟ اضغط هنا

Biphoton interference with a quantum dot entangled light source

133   0   0.0 ( 0 )
 نشر من قبل Mark Stevenson
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate optical interferometry beyond the limits imposed by the photon wavelength using triggered entangled photon pairs from a semiconductor quantum dot. Interference fringes of the entangled biphoton state reveals a periodicity half of that obtained with the single photon, and much less than that of the pump laser. High fringe visibility indicates that biphoton interference is less sensitive to decoherence than interference of two sequential single photons. The results suggest that quantum interferometry may be possible using a semiconductor LED-like device.



قيم البحث

اقرأ أيضاً

The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunic ation wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons.
Biphoton frequency comb (BFC) having quantum entanglement in a high dimensional system is widely applicable to quantum communication and quantum computation. However, a dozen mode realized so far has not been enough to realize its full potential. Her e, we show a massive-mode BFC with polarization entanglement experimentally realized by a nonlinear optical waveguide resonator. The generated BFC at least 1400 modes is broad and dense, that strongly enhances the advantage of BFC. We also demonstrated a versatile property of the present BFC, which enables us to prepare both the frequency-multiplexed entangled photon pair and the high dimensional hyperentangled one. The versatile, stable and highly efficient system with the massive-mode BFC will open up a large-scale photonic quantum information platform.
Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fiber networks can be effectively used as a transport medi um. To achieve this goal, a source of robust entangled single photon pairs is required. While time-bin entanglement offers the required robustness, currently used parametric down-conversion sources have limited performance due to multi-pair contributions. We report the realization of a source of single time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyzed the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirmed the entanglement by performing a quantum state tomography of the emitted photons, which yielded a fidelity of 0.69(3) and a concurrence of 0.41(6).
Quantum key distribution---exchanging a random secret key relying on a quantum mechanical resource---is the core feature of secure quantum networks. Entanglement-based protocols offer additional layers of security and scale favorably with quantum rep eaters, but the stringent requirements set on the photon source have made their use situational so far. Semiconductor-based quantum emitters are a promising solution in this scenario, ensuring on-demand generation of near-unity-fidelity entangled photons with record-low multi-photon emission, the latter feature countering some of the best eavesdropping attacks. Here we first employ a quantum dot to experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches: both a 250 meter long single mode fiber and in free-space, connecting two buildings within the campus of Sapienza University in Rome. Our field study highlights that quantum-dot entangled-photon sources are ready to go beyond laboratory experiments, thus opening the way to real-life quantum communication.
Entangled photon generation from semiconductor quantum dots via the biexciton-exciton cascade underlies various decoherence mechanisms related to the solid-state nature of the quantum emitters. So far, this has prevented the demonstration of nearly-m aximally entangled photons without the aid of inefficient and complex post-selection techniques that are hardly suitable for quantum communication technologies. Here, we tackle this challenge using strain-tunable GaAs quantum dots driven under two-photon resonant excitation and with strictly-degenerate exciton states. We demonstrate experimentally that our on-demand source generates polarization-entangled photons with fidelity of 0.978(5) and concurrence of 0.97(1) without resorting to post-selection techniques. Moreover, we show that the remaining decoherence mechanisms can be overcome using a modest Purcell enhancement so as to achieve a degree of entanglement >0.99. Our results highlight that GaAs quantum dots can be readily used in advanced communication protocols relying on the non-local properties of quantum entanglement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا