ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a theoretical description of molecular junctions in the Coulomb blockade regime based on density functional theory

172   0   0.0 ( 0 )
 نشر من قبل Robert Stadler
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-equilibrium Greens function techniques (NEGF) combined with Density Functional Theory (DFT) calculations have become a standard tool for the description of electron transport through single molecule nano-junctions in the coherent tunneling regime. However, the applicability of these methods for transport in the Coulomb blockade (CB) regime is still under debate. We present here NEGF-DFT calculations performed on simple model systems in the presence of an effective gate potential. The results show that: i) the CB addition energies can be predicted with such an approach with reasonable accuracy; ii) neither the magnitude of the Kohn-Sham gap nor the lack of a derivative discontinuity in the exchange-correlation functional represent a problem for this purpose.



قيم البحث

اقرأ أيضاً

195 - Zhenfei Liu , Kieron Burke 2015
Above the Kondo temperature, the Kohn-Sham zero-bias conductance of an Anderson junction has been shown to completely miss the Coulomb blockade. Within a standard model for the spectral function, we deduce a parameterization for both the onsite excha nge-correlation potential and the bias drop as a function of the site occupation that applies for all correlation strengths. We use our results to sow doubt on the common interpretation of such corrections as arising from dynamical exchange-correlation contributions.
A two-electron one-dimensional model of a heteroatomic molecule composed of two open-shell atoms is considered. Including only two electrons isolates and examines the effect that the highest occupied molecular orbital has on the Kohn-Sham potential a s the molecule dissociates. We reproduce the characteristic step and peak that previous high-level wavefunction methods have shown to exist for real molecules in the low-density internuclear region. The simplicity of our model enables us to investigate in detail their development as a function of bond-length, with little computational effort, and derive properties of their features in the dissociation limit. We show that the onset of the step is coincident with the internuclear separation at which an avoided crossing between the ground-state and lowest charge-transfer excited state is approached. Although the step and peak features have little effect on the ground-state energetics, we discuss their important consequences for dynamics and response.
We have explored a model for adsorption of water into slit-like nanochannels with two walls chemically modified by grafted polymer layers forming brushes. A version of density functional method is used as theoretical tools. The water-like fluid model adopted from the work of Clark et al. [Mol. Phys., 2006, 104, 3561] adequately reproduces the bulk vapour-liquid coexistence envelope. The polymer layer consists of chain molecules in the framework of pearl-necklace model. Each chain molecule is chemically bonded to the pore walls by a single terminating segment. Our principal focus is in the study of the dependence of polymer layer height on grafting density and in the microscopic structure of the interface between adsorbed fluid and brushes. Thermal response of these properties upon adsorption is investigated in detail. The results are of importance to understand shrinking and swelling of the molecular brushes in the nanochannels.
A finite-temperature density functional approach to describe the properties of parahydrogen in the liquid-vapor coexistence region is presented. The first proposed functional is zero-range, where the density-gradient term is adjusted so as to reprodu ce the surface tension of the liquid-vapor interface at low temperature. The second functional is finite-range and, while it is fitted to reproduce bulk pH2 properties only, it is shown to yield surface properties in good agreement with experiments. These functionals are used to study the surface thickness of the liquid-vapor interface, the wetting transition of parahydrogen on a planar Rb model surface, and homogeneous cavitation in bulk liquid pH2.
A microscopic calculation of reaction cross sections for nucleon-nucleus scattering has been performed by explicitly coupling the elastic channel to all particle-hole excitations in the target and one-nucleon pickup channels. The particle-hole states may be regarded as doorway states through which the flux flows to more complicated configurations, and subsequently to long-lived compound nucleus resonances. Target excitations for $^{40,48}$Ca, $^{58}$Ni, $^{90}$Zr and $^{144}$Sm were described in a random-phase framework using a Skyrme functional. Reaction cross sections obtained agree very well with experimental data and predictions of a state-of-the-art fitted optical potential. Couplings between inelastic states were found to be negligible, while the pickup channels contribute significantly. The effect of resonances from higher-order channels was assessed. Elastic angular distributions were also calculated within the same method, achieving good agreement with experimental data. For the first time observed absorptions are completely accounted for by explicit channel coupling, for incident energies between 10 and 70 MeV, with consistent angular distribution results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا