ﻻ يوجد ملخص باللغة العربية
An explicit lattice point realization is provided for the primary components of an arbitrary binomial ideal in characteristic zero. This decomposition is derived from a characteristic-free combinatorial description of certain primary components of binomial ideals in affine semigroup rings, namely those that are associated to faces of the semigroup. These results are intimately connected to hypergeometric differential equations in several variables.
Building on coprincipal mesoprimary decomposition [Kahle and Miller, 2014], we combinatorially construct an irreducible decomposition of any given binomial ideal. In a parallel manner, for congruences in commutative monoids we construct decomposition
We determine the Castelnuovo-Mumford regularity of binomial edge ideals of complement reducible graphs (cographs). For cographs with $n$ vertices the maximum regularity grows as $2n/3$. We also bound the regularity by graph theoretic invariants and c
Let $J_G$ be the binomial edge ideal of a graph $G$. We characterize all graphs whose binomial edge ideals, as well as their initial ideals, have regularity $3$. Consequently we characterize all graphs $G$ such that $J_G$ is extremal Gorenstein. Inde
We introduce differential primary decompositions for ideals in a commutative ring. Ideal membership is characterized by differential conditions. The minimal number of conditions needed is the arithmetic multiplicity. Minimal differential primary deco
In this paper we prove the conjectured upper bound for Castelnuovo-Mumford regularity of binomial edge ideals posed in [23], in the case of chordal graphs. Indeed, we show that the regularity of any chordal graph G is bounded above by the number of m