ﻻ يوجد ملخص باللغة العربية
We report the discovery of active star formation in Digels Cloud 2, which is one of the most distant giant molecular clouds known in the extreme outer Galaxy (EOG). At the probable Galactic radius of ~20 kpc, Cloud 2 has a quite different environment from that in the solar neighborhood, including lower metallicity, much lower gas density, and small or no perturbation from spiral arms. With new wide-field near-infrared (NIR) imaging that covers the entire Cloud 2, we discovered two young embedded star clusters located in the two dense cores of the cloud. Using our NIR and 12CO data as well as HI, radio continuum, and IRAS data in the archives, we discuss the detailed star formation processes in this unique environment. We show clear evidences of a sequential star formation triggered by the nearby huge supernova remnant, GSH 138-01-94. The two embedded clusters show a distinct morphology difference: the one in the northern molecular cloud core is a loose association with isolated-mode star formation, while the other in the southern molecular cloud core is a dense cluster with cluster-mode star formation. We propose that high compression by the combination of the SNR shell and an adjacent shell caused the dense cluster formation in the southern core. Along with the low metallicity range of the EOG, we suggest that EOG could be an excellent laboratory for the study of star formation processes, such as those triggered by supernovae, that occured during an early epoch of the Galaxys formation. In particular, the study of the EOG may shed light on the origin and role of the thick disk, whose metallicity range matches with that of the EOG well.
The extreme outer Galaxy (EOG) has a very different environment from that in the solar neighborhood, with low metallicity (less than -0.5 dex), much lower gas density, and small or no perturbation from spiral arms. The EOG is an excellent laboratory
Ultraviolet imaging with the Galaxy Evolution Explorer (GALEX) has revealed an extensive sample of UV-bright stellar complexes in the extreme outer disk of M83, extending to about four times the radius where the majority of HII regions are detected (
NGC 4203 is a nearby early-type galaxy surrounded by a very large, low-column-density HI disc. In this paper we study the star formation efficiency in the gas disc of NGC 4203 by using the UV, deep optical imaging and infrared data. We confirm that t
We report the discovery of star formation activity in perhaps the most distant molecular cloud in the extreme outer galaxy. We performed deep near infrared imaging with the Subaru 8.2 m telescope, and found two young embedded clusters at two CO peaks
We study the formation of giant dense cloud complexes and of stars within them by means of SPH numerical simulations of the mildly supersonic collision of gas streams (``inflows) in the warm neutral medium (WNM). The resulting compressions cause cool