ﻻ يوجد ملخص باللغة العربية
Mutual quasi-periodicities near the solar-rotation period appear in time series based on the Earths magnetic field, the interplanetary magnetic field, and signed solar-magnetic fields. Dominant among these is one at 27.03 +/- 0.02 days that has been highlighted by Neugebauer, et al. 2000, J. Geophys. Res., 105, 2315. Extension of their study in time and to different data reveals decadal epochs during which the ~ 27.0 day, a ~ 28.3 day, or other quasi-periods dominate the signal. Space-time eigenvalue analyses of time series in 30 solar latitude bands, based on synoptic maps of unsigned photospheric fields, lead to two maximally independent modes that account for almost 30% of the data variance. One mode spans 45 degrees of latitude in the northern hemisphere and the other one in the southern. The modes rotate around the Sun rigidly, not differentially, suggesting connection with the subsurface dynamo. Spectral analyses yield familiar dominant quasi periods 27.04 +/- 0.03 days in the North and at 28.24 +/- 0.03 days in the South. These are replaced during cycle 23 by one at 26.45 +/- 0.03 days in the North. The modes show no tendency for preferred longitudes separated by ~ 180 degrees.
The professional literature provides one means to review the evolution and geographic distribution of the scientific communities engaged in solar and heliospheric physics. With help of the Astrophysics Data System (NASA/ADS), I trace the growth of th
Solar flares with a fan-spine magnetic topology can form circular ribbons. The previous study based on Halpha line observations of the solar flares during March 05, 2014 by Xu et al. (2017) revealed uniform and continuous rotation of the magnetic fan
We examine the 2008-2016 gamma-ray and optical light curves of a number of bright Fermi blazars. In a fraction of them, the periodograms show possible evidence of quasi-periodicities related in the two bands. This coincidence strengthens their physic
The availability of about a decade of uninterrupted sky monitoring by the Fermi satellite has made possible to study long-term quasi-periodicities for high-energy sources. It is therefore not a surprise that for several blazars in the recent literatu
We perform a full 3D general relativistic magnetohydrodynamical (GRMHD) simulation of an equal-mass, spinning, binary black hole approaching merger, surrounded by a circumbinary disk and with a mini-disk around each black hole. For this purpose, we e