ﻻ يوجد ملخص باللغة العربية
We assume a community whose members adopt one of two opinions $A$ or $B$. Each member appears as an inflexible, or as a non-contrarian or contrarian floater. An inflexible sticks to its opinion, whereas a floater may change into a floater of the alternative opinion. The occurrence of this change is governed by the local majority rule: members meet in groups of a fixed size, and a floater then changes its opinion provided it is a minority in the group. Subsequently, a non-contrarian floater keeps the opinion as adopted under the local majority rule, whereas a contrarian floater adopts the alternative opinion. Whereas the effects of on the one hand inflexibles and on the other hand non-contrarians and contrarians have previously been studied seperately, the current approach allows us to gain insight in the effect of their combined presence in a community. Given fixed proportions of inflexibles $(alpha_{A}, alpha_{B})$ for the two opinions, and fixed fractions of contrarians $(gamma_{A}, gamma_{B})$ among the $A$ and $B$ floaters, we derive the update equation $p_{t+1}$ for the overall support for opinion $A$ at time $t+1$, given $p_{t}$. The update equation is derived respectively for local group sizes 1, 2 and 3. The associated dynamics generated by repeated local updates is then determined to identify its asymptotic steady configuration. The full opinion flow diagram is thus obtained, showing conditions in terms of the parameters for each opinion to eventually win the competing dynamics. Various dynamical scenarios are thus exhibited, and it is derived that relatively small densities of inflexibles allow for more variation in the qualitative outcome of the dynamics than higher densities of inflexibles.
It has been found that contrarian oscillators usually take a negative role in the collective behaviors formed by conformist oscillators. However, experiments revealed that it is also possible to achieve a strong coherence even when there are contrari
Social groups with widely different music tastes, political convictions, and religious beliefs emerge and disappear on scales from extreme subcultures to mainstream mass-cultures. Both the underlying social structure and the formation of opinions are
We introduce a contrarian opinion (CO) model in which a fraction p of contrarians within a group holds a strong opinion opposite to the opinion held by the rest of the group. At the initial stage, stable clusters of two opinions, A and B exist. Then
A model where agents show discrete behavior regarding their actions, but have continuous opinions that are updated by interacting with other agents is presented. This new updating rule is applied to both the voter and Sznajd models for interaction be
An analytical treatment of a simple opinion model with contrarian behavior is presented. The focus is on the stationary dynamics of the model and in particular on the effect of inhomogeneities in the interaction topology on the stationary behavior. W