ﻻ يوجد ملخص باللغة العربية
The superform construction of supersymmetric invariants, which consists of integrating the top component of a closed superform over spacetime, is reviewed. The cohomological methods necessary for the analysis of closed superforms are discussed and some further theoretical developments presented. The method is applied to higher-order corrections in heterotic string theory up to $a^3$. Some partial results on $N=2,d=10$ and $N=1,d=11$ are also given.
We study the zero mode cohomology of the sum of two pure spinors. The knowledge of this cohomology allows us to better understand the structure of the massless vertex operator of the Type IIB pure spinor superstring.
In the study of the Type II superstring, it is useful to consider the BRST complex associated to the sum of two pure spinors. The cohomology of this complex is an infinite-dimensional vector space. It is also a finite-dimensional algebra over the alg
We compute partition functions describing multiplicities and charges of massless and first massive string states of pure-spinor superstrings in 3,4,6,10 dimensions. At the massless level we find a spin-one gauge multiplet of minimal supersymmetry in
We give a very simple derivation of the forms of $N=2,D=10$ supergravity from supersymmetry and $SL(2,bbR)$ (for IIB). Using superspace cohomology we show that, if the Bianchi identities for the physical fields are satisfied, the (consistent) Bianchi
We study reduction of Dirac structures from the point of view of pure spinors. We describe explicitly the pure spinor line bundle of the reduced Dirac structure. We also obtain results on reduction of generalized Calabi-Yau structures.