ﻻ يوجد ملخص باللغة العربية
Quantum Monte Carlo (QMC) simulations and the Local Density Approximation (LDA) are used to map the constant particle number (canonical) trajectories of the Bose Hubbard Hamiltonian confined in a harmonic trap onto the $(mu/U,t/U)$ phase diagram of the uniform system. Generically, these curves do not intercept the tips of the Mott insulator (MI) lobes of the uniform system. This observation necessitates a clarification of the appropriate comparison between critical couplings obtained in experiments on trapped systems with those obtained in QMC simulations. The density profiles and visibility are also obtained along these trajectories. Density profiles from QMC in the confined case are compared with LDA results.
The mean-field properties of finite-temperature Bose-Einstein gases confined in spherically symmetric harmonic traps are surveyed numerically. The solutions of the Gross-Pitaevskii (GP) and Hartree-Fock-Bogoliubov (HFB) equations for the condensate a
We study the monopole (breathing) mode of a finite temperature Bose-Einstein condensate in an isotropic harmonic trap recently developed by Lobser et al. [Nat.~Phys., textbf{11}, 1009 (2015)]. We observe a nonexponential collapse of the amplitude of
We report on the transport of mixed quantum degenerate gases of bosonic 87Rb and fermionic 40K in a harmonic potential provided by a modified QUIC trap. The samples are transported over a distance of 6 mm to the geometric center of the anti-Helmholtz
We investigate the temperature-dependent behavior emerging in the vicinity of the superfluid (SF) to Mott insulator (MI) transition of interacting bosons in a two-dimensional optical lattice, described by the Bose-Hubbard model. The equilibrium phase
Periodic driving has emerged as a powerful tool in the quest to engineer new and exotic quantum phases. While driven many-body systems are generically expected to absorb energy indefinitely and reach an infinite-temperature state, the rate of heating