ﻻ يوجد ملخص باللغة العربية
We study the evolution of the energy gap in a unitary Fermi gas as a function of temperature. To this end we approximate the Fermi gas by the Hubbard lattice Hamiltonian and solve using the dynamical mean-field approximation. We have found that below the critical temperature, Tc, the system is a superfluid and the energy gap is decreasing monotonously. For temperatures above Tc the system is an insulator and the corresponding energy gap is monotonously increasing.
We study phase transition from the Mott insulator to superfluid in a periodic optical lattice. Kibble-Zurek mechanism predicts buildup of winding number through random walk of BEC phases, with the step size scaling as a the third root of transition r
Thermodynamic properties of an ultracold Fermi gas in a harmonic trap are calculated within a local density approximation, using a conserving many-body formalism for the BCS to BEC crossover problem, which has been developed by Haussmann et al. [Phys
We present results from Monte Carlo calculations investigating the properties of the homogeneous, spin-balanced unitary Fermi gas in three dimensions. The temperature is varied across the superfluid transition allowing us to determine the temperature
We prove the absence of a direct quantum phase transition between a superfluid and a Mott insulator in a bosonic system with generic, bounded disorder. We also prove compressibility of the system on the superfluid--insulator critical line and in its
We propose a phenomenological approach for the equation of state of a unitary Fermi gas. The universal equation of state is parametrised in terms of Fermi-Dirac integrals. This reproduces the experimental data over the accessible range of fugacity an