ترغب بنشر مسار تعليمي؟ اضغط هنا

Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures

109   0   0.0 ( 0 )
 نشر من قبل Yan Zhao
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a radial dependent dispersive finite-difference time-domain method for the modelling of electromagnetic cloaking structures. The permittivity and permeability of the cloak are mapped to the Drude dispersion model and taken into account in dispersive FDTD simulations. Numerical simulations demonstrate that under ideal conditions, objects placed inside the cloak are `invisible to external electromagnetic fields. However for the simplified cloak based on linear transformations, the back scattering has a similar level to the case of a PEC cylinder without any cloak, rendering the object still being `visible. It is also demonstrated numerically that the simplified cloak based on high-order transformations can indeed improve the cloaking performance.



قيم البحث

اقرأ أيضاً

A radial-dependent dispersive finite-difference time-domain (FDTD) method is proposed to simulate electromagnetic cloaking devices. The Drude dispersion model is applied to model the electromagnetic characteristics of the cloaking medium. Both lossle ss and lossy cloaking materials are examined and their operating bandwidth is also investigated. It is demonstrated that the perfect invisibility from electromagnetic cloaks is only available for lossless metamaterials and within an extremely narrow frequency band.
In this work, we present a numerical method that remedies the instabilities of the conventional FDTD approach for solving Maxwells equations in a space-time dependent magneto-electric medium with direct application to the simulation of the recently p roposed spacetime cloak. We utilize a dual grid FDTD method overlapped to the time domain to provide a stable approach for the simulation of magneto-electric medium with time and space varying permittivity, permeability and coupling coefficient. The developed method can be applied to explore other new physical possibilities offered by spacetime cloaking, metamaterials, and transformation optics.
We consider a novel method of cloaking objects from the surrounding electromagnetic fields in the microwave region. The method is based on transmission-line networks that simulate the wave propagation in the medium surrounding the cloaked object. The electromagnetic fields from the surrounding medium are coupled into the transmission-line network that guides the waves through the cloak thus leaving the cloaked object undetected. The cloaked object can be an array or interconnected mesh of small inclusions that fit inside the transmission-line network.
We present numerical procedures for analyzing the properties of periodic structures and associated couplers based upon time domain simulation. Simple post processing procedures are given for determining Brillouin diagrams and complex field distributi ons of the traveling wave solutions, and the reflection coefficient of the traveling waves by the input and output. The availability of the reflection coefficient information facilitates a systematic and efficient procedure for matching the input and output. The method has been extensively applied to coupler design for a wide variety of structures and to a study directed towards elimination of the surface field enhancement commonly experienced in coupler cells.
New connections between static elastic cloaking, low frequency elastic wave scattering and neutral inclusions are established in the context of two dimensional elasticity. A cylindrical core surrounded by a cylindrical shell is embedded in a uniform elastic matrix. Given the core and matrix properties, we answer the questions of how to select the shell material such that (i) it acts as a static elastic cloak, and (ii) it eliminates low frequency scattering of incident elastic waves. It is shown that static cloaking (i) requires an anisotropic shell, whereas scattering reduction (ii) can be satisfied more simply with isotropic materials. Implicit solutions for the shell material are obtained by considering the core-shell composite cylinder as a neutral elastic inclusion. Two types of neutral inclusion are distinguished, textit{weak} and textit{strong} with the former equivalent to low frequency transparency {and the classical Christensen and Lo generalised self-consistent result for in-plane shear from 1979. Our introduction of the textit{strong neutral inclusion} is an important extension of this result in that we show that standard anisotropic shells can act as perfect static cloaks, contrasting previous work that has employed unphysical materials.} The relationships between low frequency transparency, static cloaking and neutral inclusions provide the material designer with options for achieving elastic cloaking in the quasi-static limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا