ﻻ يوجد ملخص باللغة العربية
The results of a measurement of the proton spectra following the Non--Mesonic Weak Decay of $mathrm{^5_{Lambda}He}$, $mathrm{^7_{Lambda}Li}$ and $mathrm{^{12}_{Lambda}C}$ are presented and discussed. The experiment was performed at the ($e^+$ $e^-$) collider DA$Phi$NE at Laboratori Nazionale di Frascati of INFN. It is the first measurement for $mathrm{^7_{Lambda}Li}$, and for all the spectra the lower limit on the energy of the protons is 15 MeV, never reached before. All the spectra show a similar shape, namely a peak at around 80 MeV as expected for the free $Lambda p to np$ weak reaction, with a low energy rise that should be due to Final State Interactions and/or two--nucleon induced weak processes. The decay spectrum of $mathrm{^5_{Lambda}He}$ is somehow similar to the ones reported by previous measurements and theoretical calculations, but the same doesnt happen for the $mathrm{^{12}_{Lambda}C}$ one.
New spectra from the FINUDA experiment of the Non Mesonic Weak Decay (NMWD) proton kinetic energy for 9(Lambda)Be, 11(Lambda)B, 12(Lambda)C, 13(Lambda)C, 15 (Lambda)N and 16(Lambda)O are presented and discussed along with the published data on 5(Lamb
Previous studies of proton and neutron spectra from Non-Mesonic Weak Decay of eight Lambda-Hypernuclei (A = 5-16) have been revisited. New values of the ratio of the two-nucleon and the one-proton induced decay widths, Gamma_2N/Gamma_p, are obtained
We performed a coincidence measurement of two nucleons emitted from the nonmesonic weak decay (NMWD) of ^{5}_{Lambda}He formed via the ^{6}Li(pi^+,K^+) reaction. The energies of two nucleons and the pair number distributions in the opening angle betw
Hypernuclei are convenient laboratory to study the baryon-baryon weak interaction and associated effective Hamiltonian. The strangeness changing process, in which a Lambda hyperon converts to a neutron with a release up to 176 MeV, provides a clear s
The non-mesonic weak decay of polarized Lambda-hypernuclei is studied for the first time by taking into account, with a Monte Carlo intranuclear cascade code, the nucleon final state interactions. A one-meson-exchange model is employed to describe th