ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero-temperature generalized phase diagram of the 4d transition metals under pressure

137   0   0.0 ( 0 )
 نشر من قبل Claudio Cazorla
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use an accurate implementation of density functional theory (DFT) to calculate the zero-temperature generalized phase diagram of the 4$d$ series of transition metals from Y to Pd as a function of pressure $P$ and atomic number $Z$. The implementation used is full-potential linearized augmented plane waves (FP-LAPW), and we employ the exchange-correlation functional recently developed by Wu and Cohen. For each element, we obtain the ground-state energy for several crystal structures over a range of volumes, the energy being converged with respect to all technical parameters to within $sim 1$ meV/atom. The calculated transition pressures for all the elements and all transitions we have found are compared with experiment wherever possible, and we discuss the origin of the significant discrepancies. Agreement with experiment for the zero-temperature equation of state is generally excellent. The generalized phase diagram of the 4$d$ series shows that the major boundaries slope towards lower $Z$ with increasing $P$ for the early elements, as expected from the pressure induced transfer of electrons from $sp$ states to $d$ states, but are almost independent of $P$ for the later elements. Our results for Mo indicate a transition from bcc to fcc, rather than the bcc-hcp transition expected from $sp$-$d$ transfer.



قيم البحث

اقرأ أيضاً

The complexity of strongly correlated electron physics in vanadium dioxide is exemplified as its rich phase diagrams of all kinds, which in turn shed light on the mechanisms behind its various phase transitions. In this work, we map out the hydrostat ic pressure - temperature phase diagram of vanadium dioxide nanobeams by independently varying pressure and temperature with a diamond anvil cell. In addition to the well-known insulating M1 (monoclinic) and metallic R (tetragonal) phases, the diagram identifies the existence at high pressures of the insulating M1 (monoclinic, more conductive than M1) phase, and two metallic phases of X (monoclinic) and O (orthorhombic, at high temperature only). Systematic optical and electrical measurements combined with density functional calculations allow us to delineate their phase boundaries as well as reveal some basic features of the transitions.
The phase diagram of Zn has been explored up to 140 GPa and 6000 K, by combining optical observations, x-ray diffraction, and ab-initio calculations. In the pressure range covered by this study, Zn is found to retain a hexagonal close-packed crystal symmetry up to the melting temperature. The known decrease of the axial ratio of the hcp phase of Zn under compression is observed in x-ray diffraction experiments from 300 K up to the melting temperature. The pressure at which the axial ratio reaches the square root of 3 value, around 10 GPa, is slightly affected by temperature. When this axial ratio is reached, we observed that single crystals of Zn, formed at high temperature, break into multiple polycrystals. In addition, a noticeable change in the pressure dependence of the axial ratio takes place at the same pressure. Both phenomena could be caused by an isomorphic second-order phase transition induced by pressure in Zn. The reported melt curve extends previous results from 24 to 135 GPa. The pressure dependence obtained for the melting temperature is accurately described up to 135 GPa by using a Simon-Glatzel equation. The determined melt curve agrees with previous low-pressure studies and with shock-wave experiments, with a melting temperature of 5060 K at 135 GPa. Finally, a thermal equation of state is reported, which at room-temperature agrees with the literature.
We investigate the temperature-pressure phase diagram of BaTiO_3 using a first-principles effective-Hamiltonian approach. We find that the zero-point motion of the ions affects the form of the phase diagram dramatically. Specifically, when the zero-p oint fluctuations are included in the calculations, all the polar (tetragonal, orthorhombic, and rhombohedral) phases of BaTiO_3 survive down to 0 K, while only the rhombohedral phase does otherwise. We provide a simple explanation for this behavior. Our results confirm the essential correctness of the phase diagram proposed by Ishidate et al. (Phys. Rev. Lett. 78, 2397 (1997)).
We measured the thermal expansion of the valence fluctuating phase of SmS (golden SmS) to construct a pressure vs temperature phase diagram. The obtained phase diagram is characterized by three lines. One is a crossover line that divides the paramagn etic phase into two regions. The other two lines correspond to a second-order Neel transition and a first-order Neel transition. The crossover line appears to emerge from a tricritical point that separates the first-order Neel transition from the second-order one. We argue that a valence jump occurs at the border of antiferromagnetism.
Electrical resistivity and ac-susceptibility measurements under high pressure were carried out in high-quality single crystals of $alpha$-Mn. The pressure-temperature phase diagram consists of an antiferromagnetic ordered phase (0<$P$<1.4 GPa, $T<T_{ rm N}$), a pressure-induced ordered phase (1.4<$P$<4.2-4.4 GPa, $T<T_{rm A}$), and a paramagnetic phase. A significant increase was observed in the temperature dependence of ac-susceptibility at $T_{rm A}$, indicating that the pressure-induced ordered phase has a spontaneous magnetic moment. Ferrimagnetic order and parasitic ferromagnetism are proposed as candidates for a possible magnetic structure. At the critical pressure, where the pressure-induced ordered phase disappears, the temperature dependence of the resistivity below 10 K is proportional to $T^{5/3}$. This non-Fermi liquid behavior suggests the presence of pronounced magnetic fluctuation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا