ﻻ يوجد ملخص باللغة العربية
Let $A subset mathbb{R}^d$, $dge 2$, be a compact convex set and let $mu = varrho_0 dx$ be a probability measure on $A$ equivalent to the restriction of Lebesgue measure. Let $ u = varrho_1 dx$ be a probability measure on $B_r := {xcolon |x| le r}$ equivalent to the restriction of Lebesgue measure. We prove that there exists a mapping $T$ such that $ u = mu circ T^{-1}$ and $T = phi cdot {rm n}$, where $phicolon A to [0,r]$ is a continuous potential with convex sub-level sets and ${rm n}$ is the Gauss map of the corresponding level sets of $phi$. Moreover, $T$ is invertible and essentially unique. Our proof employs the optimal transportation techniques. We show that in the case of smooth $phi$ the level sets of $phi$ are driven by the Gauss curvature flow $dot{x}(s) = -s^{d-1} frac{varrho_1(s {rm n})}{varrho_0(x)} K(x) cdot {rm n}(x)$, where $K$ is the Gauss curvature. As a by-product one can reprove the existence of weak solutions of the classical Gauss curvature flow starting from a convex hypersurface.
We study singularities of Gauss maps of fronts and give characterizations of types of singularities of Gauss maps by geometric properties of fronts which are related to behavior of bounded principal curvatures. Moreover, we investigate relation betwe
In this paper, we consider the evolution of spacelike graphic hypersurfaces defined over a convex piece of hyperbolic plane $mathscr{H}^{n}(1)$, of center at origin and radius $1$, in the $(n+1)$-dimensional Lorentz-Minkowski space $mathbb{R}^{n+1}_{
We prove that conformally parametrized surfaces in Euclidean space $Rcubec$ of curvature $c$ admit a symmetry reduction of their Gauss-Codazzi equations whose general solution is expressed with the sixth Painleve function. Moreover, it is shown that
We show that the emerging field of discrete differential geometry can be usefully brought to bear on crystallization problems. In particular, we give a simplified proof of the Heitmann-Radin crystallization theorem (R. C. Heitmann, C. Radin, J. Stat.
We consider the flow of closed convex hypersurfaces in Euclidean space $mathbb{R}^{n+1}$ with speed given by a power of the $k$-th mean curvature $E_k$ plus a global term chosen to impose a constraint involving the enclosed volume $V_{n+1}$ and the m