ﻻ يوجد ملخص باللغة العربية
Combining old and new de Haas-van Alphen (dHvA) and magnetoresistance data, we arrive at a detailed picture of the Fermi surface of the heavy fermion superconductor UPt3. Our work was partially motivated by a new proposal that two 5f valence electrons per formula unit in UPt3 are localized by correlation effects -- agreement with previous dHvA measurements of the Fermi surface was invoked in its support. Comprehensive comparison with our new observations shows that this partially localized model fails to predict the existence of a major sheet of the Fermi surface, and is therefore less compatible with experiment than the originally proposed fully itinerant model of the electronic structure of UPt3. In support of this conclusion, we offer a more complete analysis of the fully itinerant band structure calculation, where we find a number of previously unrecognized extremal orbits on the Fermi surface.
In a joint theoretical and experimental study we investigate the pressure dependence of the Eu valence in EuPd_3B_x (0 <= x <= 1). Density functional band structure calculations are combined with x-ray absorption and x-ray diffraction measurements un
The nature of the Fermi surface observed in the recently discovered family of unconventional insulators starting with SmB$_6$ and subsequently YbB$_{12}$ is a subject of intense inquiry. Here we shed light on this question by comparing quantum oscill
The electronic band structure of bulk ferromagnetic iron is explored by angle-resolved photoemission for electron correlation effects. Fermi surface cross-sections as well as band maps are contrasted with density functional calculations. The Fermi ve
Magnetic resonance (muSR and NMR) studies of f-electron non-Fermi-liquid (NFL) materials give clear evidence that structural disorder is a major factor in NFL behavior. Longitudinal-field muSR relaxation measurements at low fields reveal a wide distr
The electron-electron interactions effects on the shape of the Fermi surface of doped graphene are investigated. The actual discrete nature of the lattice is fully taken into account. A $pi$-band tight-binding model, with nearest-neighbor hopping int