ﻻ يوجد ملخص باللغة العربية
The Kondo lattice antiferromagnet YbNiSi3 was investigated by neutron scattering. The magnetic structure of YbNiSi3 was determined by neutron diffraction on a single-crystalline sample. Inelastic scattering experiments were also performed on a pulverized sample to study the crystalline electric field (CEF) excitations. Two broad CEF excitations were observed, from which the CEF parameters were determined. The temperature dependence of the magnetic susceptibility chi and the magnetic specific heat Cmag were calculated using the determined CEF model, and compared with previous results.
By the single crystal inelastic neutron scattering the orthoferrite HoFeO3 was studied. We show that the spin dynamics of the Fe subsystem does not change through the spin-reorientation transitions. The observed spectrum of magnetic excitations was a
Temperature and field-dependent magnetization $M(H,T)$ measurements and neutron scattering study of a single crystal CeSb$_2$ are presented. Several anomalies in the magnetization curves have been confirmed at low magnetic field, i.e., 15.6 K, 12 K,
Theoretical DFT calculations using GGA+U and HSE06 frameworks enabled vibrational mode assignment and partial (atomic) phonon DOS determination in KAgF3 perovskite, a low-dimensional magnetic fluoroargentate(II). Twelve bands in the spectra of KAgF3
We report on the electrical resistivity, magnetic susceptibility and heat-capacity measurements on a new intermetallic compound CePd5Al2, crystallizing in the ZrNi2Al5-type tetragonal structure, with lattice parameters a = 4.156 A and c = 14.883 A. T
We report on the structural, thermodynamic and transport properties of high-quality single crystals of YbNiSi3 grown by the flux method. This compound crystallizes in the SmNiGe3 layered structure type of the Cmmm space group. The general physical be