Asymptotic analysis of $k$-noncrossing matchings


الملخص بالإنكليزية

In this paper we study $k$-noncrossing matchings. A $k$-noncrossing matching is a labeled graph with vertex set ${1,...,2n}$ arranged in increasing order in a horizontal line and vertex-degree 1. The $n$ arcs are drawn in the upper halfplane subject to the condition that there exist no $k$ arcs that mutually intersect. We derive: (a) for arbitrary $k$, an asymptotic approximation of the exponential generating function of $k$-noncrossing matchings $F_k(z)$. (b) the asymptotic formula for the number of $k$-noncrossing matchings $f_{k}(n) sim c_k n^{-((k-1)^2+(k-1)/2)} (2(k-1))^{2n}$ for some $c_k>0$.

تحميل البحث