ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution of magnetic domain pinning fields in GaMnAs ferromagnetic films

137   0   0.0 ( 0 )
 نشر من قبل Sanghoon Lee
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the angular dependence of the planar Hall effect in GaMnAs ferromagnetic films, we were able to determine the distribution of magnetic domain pinning fields in this material. Interestingly, there is a major difference between the pinning field distribution in as-grown and in annealed films, the former showing a strikingly narrower distribution than the latter. This conspicuous difference can be attributed to the degree of non-uniformity of magnetic anisotropy in both types of films. This finding provides a better understanding of the magnetic domain landscape in GaMnAs that has been the subject of intense debate.



قيم البحث

اقرأ أيضاً

298 - W.-T. Lee 2001
We have shown that polarized neutron reflectometry can determine in a model-free way not only the mean magnetization of a ferromagnetic thin film at any point of a hysteresis cycle, but also the mean square dispersion of the magnetization vectors of its lateral domains. This technique is applied to elucidate the mechanism of the magnetization reversal of an exchange-biased Co/CoO bilayer. The reversal process above the blocking temperature is governed by uniaxial domain switching, while below the blocking temperature the reversal of magnetization for the trained sample takes place with substantial domain rotation.
We present a quantitative investigation of magnetic domain wall pinning in thin magnets with perpendicular anisotropy. A self-consistent description exploiting the universal features of the depinning and thermally activated sub-threshold creep regime s observed in the field driven domain wall velocity, is used to determine the effective pinning parameters controlling the domain wall dynamics: the effective height of pinning barriers, the depinning threshold, and the velocity at depinning. Within this framework, the analysis of results published in the literature allows for a quantitative comparison of pinning properties for a set of magnetic materials in a wide temperature range. On the basis of scaling arguments, the microscopic parameters controlling the pinning: the correlation length of pinning, the collectively pinned domain wall length (Larkin length) and the strength of pinning disorder, are estimated from the effective pinning and the micromagnetic parameters. The analysis of thermal effects reveals a crossover between different pinning length scales and strengths at low reduced temperature.
Although pinning of domain walls in ferromagnets is ubiquitous, the absence of an appropriate characterization tool has limited the ability to correlate the physical and magnetic microstructures of ferromagnetic films with specific pinning mechanisms . Here, we show that the pinning of a magnetic vortex, the simplest possible domain structure in soft ferromagnets, is strongly correlated with surface roughness, and we make a quantitative comparison of the pinning energy and spatial range in films of various thickness. The results demonstrate that thickness fluctuations on the lateral length scale of the vortex core diameter, i.e. an effective roughness at a specific length scale, provides the dominant pinning mechanism. We argue that this mechanism will be important in virtually any soft ferromagnetic film.
We carefully investigated the ferromagnetic coupling in the as-grown and annealed ferromagnetic semiconductor GaMnAs/AlGaMnAs bilayer devices. We observed that the magnetic interaction between the two layers strongly affects the magnetoresistance of the GaMnAs layer with applying out of plane magnetic field. After low temperature annealing, the magnetic easy axis of the AlGaMnAs layer switches from out of plane into in-plane and the interlayer coupling efficiency is reduced from up to 0.6 to less than 0.4. However, the magnetic coupling penetration depth for the annealed device is twice that of the as-grown bilayer device.
279 - M. Turek , J. Siewert , J. Fabian 2008
We consider the electronic properties of ferromagnetic bulk GaMnAs at zero temperature using two realistic tight-binding models, one due to Tang and Flatte and one due to Masek. In particular, we study the density of states, the Fermi energy, the inv erse participation ratio, and the optical conductivity with varying impurity concentration x=0.01-0.15. The results are very sensitive to the assumptions made for the on-site and hopping matrix elements of the Mn impurities. For low concentrations, x<0.02, Maseks model shows only small deviations from the case of p-doped GaAs with increased number of holes while within Tang and Flattes model an impurity-band forms. For higher concentrations x, Maseks model shows minor quantitative changes in the properties we studied while the results of the Tang and Flatte model exhibit qualitative changes including strong localization of eigenstates with energies close to the band edge. These differences between the two approaches are in particular visible in the optical conductivity, where Maseks model shows a Drude peak at zero frequency while no such peak is observed in Tang and Flattes model. Interestingly, although the two models differ qualitatively the calculated effective optical masses of both models are similar within the range of 0.4-1.0 of the free electron mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا