ﻻ يوجد ملخص باللغة العربية
It is generally accepted that scale-free networks is prone to epidemic spreading allowing the onset of large epidemics whatever the spreading rate of the infection. In the paper, we show that disease propagation may be suppressed in particular fractal scale-free networks. We first study analytically the topological characteristics of a network model and show that it is simultaneously scale-free, highly clustered, large-world, fractal and disassortative. Any previous model does not have all the properties as the one under consideration. Then, by using the renormalization group technique we analyze the dynamic susceptible-infected-removed (SIR) model for spreading of infections. Interestingly, we find the existence of an epidemic threshold, as compared to the usual epidemic behavior without a finite threshold in uncorrelated scale-free networks. This phenomenon indicates that degree distribution of scale-free networks does not suffice to characterize the epidemic dynamics on top of them. Our results may shed light in the understanding of the epidemics and other spreading phenomena on real-life networks with similar structural features as the considered model.
Real networks can be classified into two categories: fractal networks and non-fractal networks. Here we introduce a unifying model for the two types of networks. Our model network is governed by a parameter $q$. We obtain the topological properties o
The study of complex networks sheds light on the relation between the structure and function of complex systems. One remarkable result is the absence of an epidemic threshold in infinite-size scale-free networks, which implies that any infection will
Self-similarity is a property of fractal structures, a concept introduced by Mandelbrot and one of the fundamental mathematical results of the 20th century. The importance of fractal geometry stems from the fact that these structures were recognized
We study the effect of the connectivity pattern of complex networks on the propagation dynamics of epidemics. The growth time scale of outbreaks is inversely proportional to the network degree fluctuations, signaling that epidemics spread almost inst
The class of Koch fractals is one of the most interesting families of fractals, and the study of complex networks is a central issue in the scientific community. In this paper, inspired by the famous Koch fractals, we propose a mapping technique conv