ﻻ يوجد ملخص باللغة العربية
The microcanonical analysis is shown to be a powerful tool to characterize the protein folding transition and to neatly distinguish between good and bad folders. An off-lattice model with parameter chosen to represent polymers of these two types is used to illustrate this approach. Both canonical and microcanonical ensembles are employed. The required calculations were performed using parallel tempering Monte Carlo simulations. The most revealing features of the folding transition are related to its first-order-like character, namely, the S-bend pattern in the caloric curve, which gives rise to negative microcanonical specific heats, and the bimodality of the energy distribution function at the transition temperatures. Models for a good folder are shown to be quite robust against perturbations in the interaction potential parameters.
We analyse a picture of transport in which two large but finite charged electrodes discharge across a nanoscale junction. We identify a functional whose minimisation, within the space of all bound many-body wavefunctions, defines an instantaneous ste
We review uses of the generalized-ensemble algorithms for free-energy calculations in protein folding. Two of the well-known methods are multicanonical algorithm and replica-exchange method; the latter is also referred to as parallel tempering. We pr
In the present work, we discuss how the functional form of thermodynamic observables can be deduced from the geometric properties of subsets of phase space. The geometric quantities taken into account are mainly extrinsic curvatures of the energy lev
By means of the principle of minimal sensitivity we generalize the microcanonical inflection-point analysis method by probing derivatives of the microcanonical entropy for signals of transitions in complex systems. A strategy of systematically identi
A geometric analysis of protein folding, which complements many of the models in the literature, is presented. We examine the process from unfolded strand to the point where the strand becomes self-interacting. A central question is how it is possibl