ترغب بنشر مسار تعليمي؟ اضغط هنا

The Color Bimodality in Galaxy Clusters since z = 0.9

153   0   0.0 ( 0 )
 نشر من قبل Yeong-Shang Loh
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the evolution of the color-magnitude distribution of galaxy clusters from z = 0.45 to z = 0.9 using a homogeneously selected sample of ~1000 clusters drawn from the Red-Sequence Cluster Survey (RCS). The red fraction of galaxies decreases as a function of increasing redshift for all cluster-centric radii, consistent with the Butcher-Oemler effect, and suggesting that the cluster blue population may be identified with newly infalling galaxies. We also find that the red fraction at the core has a shallower evolution compared with that at the cluster outskirts. Detailed examination of the color distribution of blue galaxies suggests that they have colors consistent with normal spirals and may redden slightly with time. Galaxies of starburst spectral type contribute less than 5% of the increase in the blue population at high redshift, implying that the observed Butcher-Oemler effect is not caused by a unobscured starbursts, but is more consistent with a normal coeval field population.



قيم البحث

اقرأ أيضاً

We present an analysis of a 50 orbit HST ACS observation of the M87 globular cluster system. We use the extraordinary depth of this dataset to test whether the colors and magnitudes show evidence for a mass-metallicity relation in globular cluster po pulations. We find only a weak or absent relation between the colors and magnitudes of the metal poor subpopulation of globular clusters. The weakness or absence of a color-magnitude relation is established over a wide range in luminosity from $M_V=-11$ to $M_V=-6$, encompassing most of the M87 globular clusters. The constancy of the colors of the metal-poor subpopulation seen in our 50 orbit observation is in contrast to suggestions from single orbit ACS data that the metal-poor globular clusters in M87 and several other galaxies show a blue tilt. The formal best fit for the mass-metallicity relation for the metal-poor subpopulation in our much deeper data is $Zpropto M^{0.08pm0.05}$. Our analysis of these data also shows a possible small red tilt in the metal-rich globular cluster subpopulation. While either of these small tilts may be real, they may also illustrate the limit to which mass-metallicity relations can be determined, even in such extraordinarily deep data. We specifically test for a wide range of systematic effects and find that while small tilts cannot be confirmed or rejected, the data place a strong upper limit to any tilt of $|0.20|pm0.05$. This upper limit is much smaller than some earlier claims from single orbit data, and strongly limits self-enrichment within globular clusters. This mass-metallicity relation for globular clusters is also shallower than the relation for galaxies, suggesting that the formation mechanisms for these two types of objects are different.
203 - David G. Gilbank 2007
We use a statistical sample of ~500 rich clusters taken from 72 square degrees of the Red-Sequence Cluster Survey (RCS-1) to study the evolution of ~30,000 red-sequence galaxies in clusters over the redshift range 0.35<z<0.95. We construct red-sequen ce luminosity functions (RSLFs) for a well-defined, homogeneously selected, richness limited sample. The RSLF at higher redshifts shows a deficit of faint red galaxies (to M_V=> -19.7) with their numbers increasing towards the present epoch. This is consistent with the `down-sizing` picture in which star-formation ended at earlier times for the most massive (luminous) galaxies and more recently for less massive (fainter) galaxies. We observe a richness dependence to the down-sizing effect in the sense that, at a given redshift, the drop-off of faint red galaxies is greater for poorer (less massive) clusters, suggesting that star-formation ended earlier for galaxies in more massive clusters. The decrease in faint red-sequence galaxies is accompanied by an increase in faint blue galaxies, implying that the process responsible for this evolution of faint galaxies is the termination of star-formation, possibly with little or no need for merging. At the bright end, we also see an increase in the number of blue galaxies with increasing redshift, suggesting that termination of star-formation in higher mass galaxies may also be an important formation mechanism for higher mass ellipticals. By comparing with a low-redshift Abell Cluster sample, we find that the down-sizing trend seen within RCS-1 has continued to the local universe.
122 - Tomotsugu Goto 2008
There is a huge gap between properties of red-sequence selected massive galaxy clusters at z<1 and Lyman-break selected proto-clusters at z>3. It is important to understand when and how the z>3 proto-clusters evolve into passive clusters at z<1. We aim to fill this cluster desert by using the space-based N4(4um) imaging with the AKARI. The z-N4 color is a powerful separator of cluster galaxies at z>1, taking advantage of the 4000A break and the 1.6um bump. We carefully selected 16 promising cluster candidates at 0.9<z<1.7, which all show obvious over-density of galaxies and a prominent red-sequence. At this redshift range, the mid-infrared S15um/S9um flux ratio is an extinction-free indicator of galaxy star formation activity due to the redshifted PAH emission lines (6.2,7.7 and 8.6um). We show statistically that the cluster galaxies have a lower S15um/S9um flux ratio than field galaxies, i.e., cluster galaxies already have lower star-formation activity at 0.9<z<1.7, pushing the formation epoch of these galaxy clusters to a higher redshift.
We present an analysis of stellar populations in passive galaxies in seven massive X-ray clusters at z=0.19-0.89. Based on absorption line strengths measured from our high signal-to-noise spectra, the data support primarily passive evolution of the g alaxies. We use the scaling relations between velocity dispersions and the absorption line strengths to determine representative mean line strengths for the clusters. From the age determinations based on the line strengths (and stellar population models), we find a formation redshift of z_form=1.96(-0.19,+0.24). Based on line strength measurements from high signal-to-noise composite spectra of our data, we establish the relations between velocity dispersion, ages, metallicities [M/H] and abundance ratios [alpha/Fe] as a function of redshift. The [M/H]-velocity dispersion and [alpha/Fe]-velocity dispersion relations are steep and tight. The age-velocity dispersion relation is flat, with zero point changes reflecting passive evolution. The scatter in all three parameters are within 0.08-0.15 dex at fixed velocity dispersions, indicating a large degree of synchronization in the evolution of the galaxies. We find indication of cluster-to-cluster differences in metallicities and abundance ratios. However, variations in stellar populations with the cluster environment can only account for a very small fraction of the intrinsic scatter in the scaling relations. Thus, within these very massive clusters the main driver of the properties of the stellar populations in passive galaxies appears to be the galaxy velocity dispersion.
Using galaxy clusters from the ESO Distant Cluster Survey, we study how the distribution of galaxies along the colour-magnitude relation has evolved since z~0.8. While red-sequence galaxies in all these clusters are well described by an old, passivel y evolving population, we confirm our previous finding of a significant evolution in their luminosity distribution as a function of redshift. When compared to galaxy clusters in the local Universe, the high redshift EDisCS clusters exhibit a significant deficit of faint red galaxies. Combining clusters in three different redshift bins, and defining as `faint all galaxies in the range 0.4 > L/L* > 0.1, we find a clear decrease in the luminous-to-faint ratio of red galaxies from z~0.8 to z~0.4. The amount of such a decrease appears to be in qualitative agreement with predictions of a model where the blue bright galaxies that populate the colour-magnitude diagram of high redshift clusters, have their star formation suppressed by the hostile cluster environment. Although model results need to be interpreted with caution, our findings clearly indicate that the red-sequence population of high-redshift clusters does not contain all progenitors of nearby red-sequence cluster galaxies. A significant fraction of these must have moved onto the red-sequence below z~0.8.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا