ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for the signatures of jet-ISM interactions in X-ray binaries

139   0   0.0 ( 0 )
 نشر من قبل James Miller-Jones
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Jets from X-ray binaries are continuously injecting matter and energy into the surrounding interstellar medium (ISM). However, there exist to date relatively few cases where jet-ISM interactions have been directly observed. We review the current examples, and go on to present new data on the proposed hotspots of GRS1915+105, finding no concrete evidence for any association between the hotspots and the central source, in agreement with previous findings in the literature. We also present preliminary results on radio and H-alpha searches for jet-ISM interactions around known X-ray binaries, and discuss strategies for future searches.



قيم البحث

اقرأ أيضاً

142 - Pei-Xin Shen , Wei-Min Gu 2020
When the matter from a companion star is accreted towards the central compact accretor, i.e. a black hole (BH) or a neutron star (NS), an accretion disc and a jet outflow will form, providing bight X-ray and radio emission, which is known as X-ray bi naries (XRBs). In the low/hard state, there exist disc-jet couplings in XRBs, but it remains uncertain whether the jet power comes from the disc or the central accretor. Moreover, BHXRBs have different properties compared with NSXRBs: quiescent BHXRBs are typically two to three orders of magnitude less luminous than NSXRBs in X-ray, whereas BHXRBs are more radio loud than NSXRBs. In observations, an empirical correlation has been established between radio and X-ray luminosity, $L_{rm R} propto L_{rm X}^b$, where $bsim 0.7$ for BHXRBs and $b sim 1.4$ for non-pulsating NSXRBs. However, there are some outliers of BHXRBs showing unusually steep correlation as NSXRBs at higher luminosities. In this work, under the assumption that the origin of jet power is related to the internal energy of the inner disc, we apply our magnetized, radiatively efficient thin disc model and the well-known radiatively inefficient accretion flow model to NSXRBs and BHXRBs. We find that the observed radio/X-ray correlations in XRBs can be well understood by the disc-jet couplings.
131 - N. Vulic 2012
The population of low-luminosity (< 10^35 erg/s) X-Ray Binaries (XRBs) has been investigated in our Galaxy and M31 but not further. To address this problem, we have used data from the Chandra X-Ray Observatory and the Hubble Space Telescope to invest igate the faint population of XRBs in the grand-design spiral galaxy M51. A matching analysis found 25 star clusters coincident with 20 X-ray point sources within 1.5 (60 pc). From X-ray and optical color-color plots we determine that this population is dominated by high-mass XRBs. A stacking analysis of the X-ray data at the positions of optically-identified star clusters was completed to probe low-luminosity X-ray sources. No cluster type had a significant detection in any X-ray energy band. An average globular cluster had the largest upper limit, 9.23 x 10^34 erg/s, in the full-band (0.3 - 8 keV) while on average the complete sample of clusters had the lowest upper limit, 6.46 x 10^33 erg/s in the hard-band (2 - 8 keV). We determined average luminosities of the young and old star cluster populations and compared the results to those from the Milky Way. We conclude that deeper X-ray data is required to identify faint sources with a stacking analysis.
206 - T. Shahbaz 2007
We present near-infrared linear spectropolarimetry of a sample of persistent X-ray binaries, Sco X-1, Cyg X-2 and GRS1915+105. The slopes of the spectra are shallower than what is expected from a standard steady-state accretion disc, and can be expla ined if the near-infrared flux contains a contribution from an optically thin jet. For the neutron star systems, Sco X-1 and Cyg X-2, the polarization levels at 2.4um are 1.3+/-0.10% and 5.4+/-0.7% respectively which is greater than the polarization level at 1.65um. This cannot be explained by interstellar polarization or electron scattering in the anisotropic environment of the accretion flow. We propose that the most likely explanation is that this is the polarimetric signature of synchrotron emission arising from close to the base of the jets in these systems. In the black hole system GRS1915+105 the observed polarization, although high (5.0+/-1.2% at 2.4um), may be consistent with interstellar polarization. For Sco X-1 the position angle of the radio jet on the sky is approximately perpendicular to the near-infrared position angle (electric vector), suggesting that the magnetic field is aligned with the jet. These observations may be a first step towards probing the ordering, alignment and variability of the outflow magnetic field in a region closer to the central accreting object than is observed in the radio band.
We elaborate on the paradigm proposed in Ferreira et al. (2006), where the increase and decrease in the disk accretion rate is accompanied by a modification of the disk magnetization $mu propto B_z^2/dot{m}_{in}$, which in turn determines the dominan t torque allowing accretion. For $mu>0.1$, the accretion flow produces jets that vertically, carry away the disk angular momentum (jet-emitting disk or JED). The goal of this paper is to investigate the spectral signatures of the JED configurations. We have developed a two-temperature plasma code that computes the disk local thermal equilibria, taking into account the advection of energy in an iterative way. Our code addresses optically thin-to-thick transitions, both radiation and gas supported regimes and computes in a consistent way the emitted spectrum from a steady-state disk. The optically thin emission is obtained using the BELM code, which provides accurate spectra for bremsstrahlung and synchrotron emission processes as well as for their local Comptonization. For a range in radius and accretion rates, JEDs exhibit three thermal equilibria, one thermally unstable and two stables. Due to the existence of two thermally stable solutions, a hysteresis cycle is naturally obtained. However, standard outbursting X-ray binary cycles cannot be reproduced. Another striking feature of JEDs is their ability to reproduce luminous hard states. Showing that when the loss of angular momentum and power in jets is consistently taken into account, accretion disks have spectral signatures that are consistent with hard states, even up to high luminosities. The reproduction of soft states being well performed by standard accretion disks (SAD), this study argues for the existence of hybrid disk configuration: JED and SAD. A study of such hybrid configuration will be presented in a forthcoming paper III.
102 - David M. Russell 2006
Accreting black holes and neutron stars release an unknown fraction of the infalling particles and energy in the form of collimated jets. The jets themselves are radiatively inefficient, but their power can be constrained by observing their interacti on with the surrounding environment. Here we present observations of X-ray binary jet-ISM interactions which produce optical line emission, using the ESO/MPI 2.2m and Isaac Newton Telescopes. We constrain the time-averaged power of the Cyg X-1 jet-powered nebula, and present a number of new candidate nebulae discovered. Comparisons are made to the large scale lobes of extragalactic AGN. We also speculate that some emission line emitters close to X-ray binaries in M31 are likely to be microquasar jet-powered nebulae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا