ﻻ يوجد ملخص باللغة العربية
Jets from X-ray binaries are continuously injecting matter and energy into the surrounding interstellar medium (ISM). However, there exist to date relatively few cases where jet-ISM interactions have been directly observed. We review the current examples, and go on to present new data on the proposed hotspots of GRS1915+105, finding no concrete evidence for any association between the hotspots and the central source, in agreement with previous findings in the literature. We also present preliminary results on radio and H-alpha searches for jet-ISM interactions around known X-ray binaries, and discuss strategies for future searches.
When the matter from a companion star is accreted towards the central compact accretor, i.e. a black hole (BH) or a neutron star (NS), an accretion disc and a jet outflow will form, providing bight X-ray and radio emission, which is known as X-ray bi
The population of low-luminosity (< 10^35 erg/s) X-Ray Binaries (XRBs) has been investigated in our Galaxy and M31 but not further. To address this problem, we have used data from the Chandra X-Ray Observatory and the Hubble Space Telescope to invest
We present near-infrared linear spectropolarimetry of a sample of persistent X-ray binaries, Sco X-1, Cyg X-2 and GRS1915+105. The slopes of the spectra are shallower than what is expected from a standard steady-state accretion disc, and can be expla
We elaborate on the paradigm proposed in Ferreira et al. (2006), where the increase and decrease in the disk accretion rate is accompanied by a modification of the disk magnetization $mu propto B_z^2/dot{m}_{in}$, which in turn determines the dominan
Accreting black holes and neutron stars release an unknown fraction of the infalling particles and energy in the form of collimated jets. The jets themselves are radiatively inefficient, but their power can be constrained by observing their interacti