ترغب بنشر مسار تعليمي؟ اضغط هنا

Results from a search for the $0 ubetabeta$-decay of $^{130}Te$

101   0   0.0 ( 0 )
 نشر من قبل Iulian Bandac
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A detailed description of the CUORICINO $^{130}Te$ neutrinoless double-beta ($ bb$) decay experiment is given and recent results are reported. CUORICINO is an array of 62 tellurium oxide ($TeO_{2}$) bolometers with an active mass of 40.7 kg. It is cooled to $sim 8-10$ mK by a dilution refrigerator shielded from environmental radioactivity and energetic neutrons. It is running in the Laboratori Nazionali del Gran Sasso (LNGS) in Assergi, Italy. These data represent an exposure of $11.83textrm{kg}...textrm{y}$ or 91 mole-years of $^{130}Te$. No evidence for $ bb$-decay was observed and a limit of $T^{0 u}_{1/2}(^{130}Te)geq3.0times10^{24}$ y (90% C.L.) is set. This corresponds to an upper limit on the effective mass, $< m_{ u}>$, between 0.19 and 0.68 eV when analyzed with the many published nuclear structure calculations. In the context of these nuclear models, the values fall within the range corresponding to the claim of evidence of $ bb$-decay by H.V. Klapdor-Kleingrothaus, textit{et al.} The experiment continues to acquire data.



قيم البحث

اقرأ أيضاً

The CUORE experiment, a ton-scale cryogenic bolometer array, recently began operation at the Laboratori Nazionali del Gran Sasso in Italy. The array represents a significant advancement in this technology, and in this work we apply it for the first t ime to a high-sensitivity search for a lepton-number--violating process: $^{130}$Te neutrinoless double-beta decay. Examining a total TeO$_2$ exposure of 86.3 kg$cdot$yr, characterized by an effective energy resolution of (7.7 $pm$ 0.5) keV FWHM and a background in the region of interest of (0.014 $pm$ 0.002) counts/(keV$cdot$kg$cdot$yr), we find no evidence for neutrinoless double-beta decay. The median statistical sensitivity of this search is $7.0times10^{24}$ yr. Including systematic uncertainties, we place a lower limit on the decay half-life of $T^{0 u}_{1/2}$($^{130}$Te) > $1.3times 10^{25}$ yr (90% C.L.). Combining this result with those of two earlier experiments, Cuoricino and CUORE-0, we find $T^{0 u}_{1/2}$($^{130}$Te) > $1.5times 10^{25}$ yr (90% C.L.), which is the most stringent limit to date on this decay. Interpreting this result as a limit on the effective Majorana neutrino mass, we find $m_{betabeta}<(110 - 520)$ meV, where the range reflects the nuclear matrix element estimates employed.
We report the results of a search for neutrinoless double-beta decay in a 9.8~kg$cdot$yr exposure of $^{130}$Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest a re $5.1pm 0.3{rm~keV}$ FWHM and $0.058 pm 0.004,(mathrm{stat.})pm 0.002,(mathrm{syst.})$~counts/(keV$cdot$kg$cdot$yr), respectively. The median 90%~C.L. lower-limit sensitivity of the experiment is $2.9times 10^{24}~{rm yr}$ and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of $^{130}$Te and place a Bayesian lower bound on the decay half-life, $T^{0 u}_{1/2}>$~$ 2.7times 10^{24}~{rm yr}$ at 90%~C.L. Combining CUORE-0 data with the 19.75~kg$cdot$yr exposure of $^{130}$Te from the Cuoricino experiment we obtain $T^{0 u}_{1/2} > 4.0times 10^{24}~mathrm{yr}$ at 90%~C.L.~(Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, $m_{betabeta}< 270$ -- $760~mathrm{meV}$.
We measured two-neutrino double beta decay of $^{130}$Te using an exposure of 300.7 kg$cdot$yr accumulated with the CUORE detector. Using a Bayesian analysis to fit simulated spectra to experimental data, it was possible to disentangle all the major background sources and precisely measure the two-neutrino contribution. The half-life is in agreement with past measurements with a strongly reduced uncertainty: $T^{2 u}_{1/2} = 7.71^{+0.08}_{-0.06}mathrm{(stat.)}^{+0.12}_{-0.15}mathrm{(syst.)}times10^{20}$ yr. This measurement is the most precise determination of the $^{130}$Te 2$ ubetabeta$ decay half-life to date.
The CUORE experiment is a large bolometric array searching for the lepton number violating neutrino-less double beta decay ($0 ubetabeta$) in the isotope $mathrm{^{130}Te}$. In this work we present the latest results on two searches for the double be ta decay (DBD) of $mathrm{^{130}Te}$ to the first $0^{+}_2$ excited state of $mathrm{^{130}Xe}$: the $0 ubetabeta$ decay and the Standard Model-allowed two-neutrinos double beta decay ($2 ubetabeta$). Both searches are based on a 372.5 kg$times$yr TeO$_2$ exposure. The de-excitation gamma rays emitted by the excited Xe nucleus in the final state yield a unique signature, which can be searched for with low background by studying coincident events in two or more bolometers. The closely packed arrangement of the CUORE crystals constitutes a significant advantage in this regard. The median limit setting sensitivities at 90% Credible Interval (C.I.) of the given searches were estimated as $mathrm{S^{0 u}_{1/2} = 5.6 times 10^{24} : mathrm{yr}}$ for the ${0 ubetabeta}$ decay and $mathrm{S^{2 u}_{1/2} = 2.1 times 10^{24} : mathrm{yr}}$ for the ${2 ubetabeta}$ decay. No significant evidence for either of the decay modes was observed and a Bayesian lower bound at $90%$ C.I. on the decay half lives is obtained as: $mathrm{(T_{1/2})^{0 u}_{0^+_2} > 5.9 times 10^{24} : mathrm{yr}}$ for the $0 ubetabeta$ mode and $mathrm{(T_{1/2})^{2 u}_{0^+_2} > 1.3 times 10^{24} : mathrm{yr}}$ for the $2 ubetabeta$ mode. These represent the most stringent limits on the DBD of $^{130}$Te to excited states and improve by a factor $sim5$ the previous results on this process.
We report on a search for double beta decay of $^{130}$Te to the first $0^{+}$ excited state of $^{130}$Xe using a 9.8 kg$cdot$yr exposure of $^{130}$Te collected with the CUORE-0 experiment. In this work we exploit different topologies of coincident events to search for both the neutrinoless and two-neutrino double-decay modes. We find no evidence for either mode and place lower bounds on the half-lives: $tau^{0 u}_{0^+}>7.9cdot 10^{23}$ yr and $tau^{2 u}_{0^+}>2.4cdot 10^{23}$ yr. Combining our results with those obtained by the CUORICINO experiment, we achieve the most stringent constraints available for these processes: $tau^{0 u}_{0^+}>1.4cdot 10^{24}$ yr and $tau^{2 u}_{0^+}>2.5cdot 10^{23}$ yr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا