ﻻ يوجد ملخص باللغة العربية
We study a simple reconfigurable robot model which has not been previously examined: cubic robots comprised of three-dimensional cubic modules which can slide across each other and rotate about each others edges. We demonstrate that the cubic robot model is universal, i.e., that an n-module cubic robot can reconfigure itself into any specified n-module configuration. Additionally, we provide an algorithm that efficiently plans and executes cubic robot motion. Our results directly extend to a d-dimensional model.
We give both efficient algorithms and hardness results for reconfiguring between two connected configurations of modules in the hexagonal grid. The reconfiguration moves that we consider are pivots, where a hexagonal module rotates around a vertex sh
We present the first universal reconfiguration algorithm for transforming a modular robot between any two facet-connected square-grid configurations using pivot moves. More precisely, we show that five extra helper modules (musketeers) suffice to rec
We consider a swarm of $n$ autonomous mobile robots, distributed on a 2-dimensional grid. A basic task for such a swarm is the gathering process: All robots have to gather at one (not predefined) place. A common local model for extremely simple robot
We present a number of breakthroughs for coordinated motion planning, in which the objective is to reconfigure a swarm of labeled convex objects by a combination of parallel, continuous, collision-free translations into a given target arrangement. Pr
We address the problem of maintaining resource availability in a networked multi-robot team performing distributed tracking of unknown number of targets in an environment of interest. Based on our model, robots are equipped with sensing and computati