ﻻ يوجد ملخص باللغة العربية
We examine medium-enhanced, neutrino scattering-induced decoherent production of dark matter candidate sterile neutrinos in the early universe. In cases with a significant net lepton number we find two resonances, where the effective in-medium mixing angles are large. We calculate the lepton number depletion-driven evolution of these resonances. We describe the dependence of this evolution on lepton numbers, sterile neutrino rest mass, and the active-sterile vacuum mixing angle. We find that this resonance evolution can result in relic sterile neutrino energy spectra with a generic form which is sharply peaked in energy. We compare our complete quantum kinetic equation treatment with the widely-used quantum Zeno ansatz.
We solve the problem of coherent Mikheyev-Smirnov-Wolfenstein (MSW) resonant active-to-sterile neutrino flavor conversion driven by an initial lepton number in the early universe. We find incomplete destruction of lepton number in this process and a
We study the phenomenology of a keV sterile neutrino in a supersymmetric model with $U(1)_R-$ lepton number in the light of a very recent observation of an X-ray line signal at around 3.5 keV, detected in the X-ray spectra of Andromeda galaxy and var
We investigate how hypothetical particles - sterile neutrinos - can be produced in the interior of exploding supernovae via the resonant conversion of $bar u_mu$ and $bar u_tau$. The novelty of our treatment lies in the proper account of the resulti
We develop the consequences of introducing a purely leptonic, lepton number violating non-standard interaction (NSI) and standard model neutrino mixing with a fourth, sterile neutrino in the analysis of short-baseline, neutrino experiments. We focus
Experimentally, baryon number minus lepton number, $B-L$, appears to be a good global symmetry of nature. We explore the consequences of the existence of gauge-singlet scalar fields charged under $B-L$ -- dubbed lepton-number-charged scalars, LeNCS -