Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: The critical case $H=1/4$


الملخص بالإنكليزية

We derive the asymptotic behavior of weighted quadratic variations of fractional Brownian motion $B$ with Hurst index $H=1/4$. This completes the only missing case in a very recent work by I. Nourdin, D. Nualart and C. A. Tudor. Moreover, as an application, we solve a recent conjecture of K. Burdzy and J. Swanson on the asymptotic behavior of the Riemann sums with alternating signs associated to $B$.

تحميل البحث