ﻻ يوجد ملخص باللغة العربية
We present a continuous-time Monte Carlo method for quantum impurity models, which combines a weak-coupling expansion with an auxiliary-field decomposition. The method is considerably more efficient than Hirsch-Fye and free of time discretization errors, and is particularly useful as impurity solver in large cluster dynamical mean field theory (DMFT) calculations.
We derive equations of motion for Greens functions of the multi-orbital Anderson impurity model by differentiating symmetrically with respect to all time arguments. The resulting equations relate the one- and two-particle Greens function to correlato
In the present paper, we present an efficient continuous-time quantum Monte Carlo impurity solver with high acceptance rate at low temperature for multi-orbital quantum impurity models with general interaction. In this hybridization expansion impurit
We present an extension of constrained-path auxiliary-field quantum Monte Carlo (CP-AFQMC) for the treatment of correlated electronic systems coupled to phonons. The algorithm follows the standard CP-AFQMC approach for description of the electronic d
The negative sign problem in quantum Monte Carlo (QMC) simulations of cluster impurity problems is the major bottleneck in cluster dynamical mean field calculations. In this paper we systematically investigate the dependence of the sign problem on th
We propose a novel technique for speeding up the self-learning Monte Carlo method applied to the single-site impurity model. For the case where the effective Hamiltonian is expressed by polynomial functions of differences of imaginary-time coordinate