ﻻ يوجد ملخص باللغة العربية
Two-body relaxation times of nuclear star clusters are short enough that gravitational encounters should substantially affect their structure in 10 Gyr or less. In nuclear star clusters without massive black holes, dynamical evolution is a competition between core collapse, which causes densities to increase, and heat input from the surrounding galaxy, which causes densities to decrease. The maximum extent of a nucleus that can resist expansion is derived numerically for a wide range of initial conditions; observed nuclei are shown to be compact enough to resist expansion, although there may have been an earlier generation of low-density nuclei that were dissolved. An evolutionary model for NGC 205 is presented which suggests that the nucleus of this galaxy has already undergone core collapse. Adding a massive black hole to a nucleus inhibits core collapse, and nuclear star clusters with black holes always expand, due primarily to heat input from the galaxy and secondarily to heating from stellar disruptions. The expansion rate is smaller for larger black holes due to the smaller temperature difference between galaxy and nucleus when the black hole is large. The rate of stellar tidal disruptions and its variation with time are computed for a variety of initial models. The disruption rate generally decreases with time due to the evolving nuclear density, particularly in the faintest galaxies, assuming that scaling relations derived for luminous galaxies can be extended to low luminosities.
We study the evolution of embedded clusters. The equations of motion of the stars in the cluster are solved by direct N-body integration while taking the effects of stellar evolution and the hydrodynamics of the natal gas content into account. The gr
We use N-body simulations of star clusters to investigate the possible dynamical origins of the observed spread in core radius among intermediate-age and old star clusters in the Large Magellanic Cloud (LMC). Two effects are considered, a time-varyin
Until now it has been impossible to observationally measure how star cluster scale height evolves beyond 1Gyr as only small samples have been available. Here we establish a novel method to determine the scale height of a cluster sample using modelled
We report on the discovery of several compact regions of mid-infrared emission in the starforming circum nuclear disk of the starburst/Seyfert2 galaxy NGC7582. The compact sources do not have counterparts in the optical and near-infrared, suggesting
We present a novel and flexible tensor approach to computing the effect of a time-dependent tidal field acting on a stellar system. The tidal forces are recovered from the tensor by polynomial interpolation in time. The method has been implemented in